FEATURES OF THE OCULAR IMMUNE RESPONSE IN RABBITS WITH MECHANICAL CORNEAL INJURY AND ITS CORRECTION WITH STEM CELLS
DOI:
https://doi.org/10.11603/mcch.2410-681X.2025.i2.15521Keywords:
corneal injury; correction; Corneregel; stem cells; immune system; cytokines.Abstract
Introduction. Research in ophthalmology has shown the significant role of cytokines as key bioregulators of inflammatory and reparative processes in the pathogenesis of eye diseases. Aim of the Study. The aim of our study was to investigate the changes in cellular immunity indicators and the cytokine profile in the blood and aqueous humor of the anterior chamber of rabbits' eyes following a simulated mechanical non-penetrating corneal injury and treatment with Corneregel and mesenchymal stem cells (MSCs). Methods. An epithelial incision was made on the superior part of the cornea using a trephine, after which the epithelium was removed along with the anterior layer of the corneal stroma. Anesthesia was administered locally using a 0.5 % Alcaine solution and a 2 % lidocaine solution. For treatment, the preparation Corneregel and mesenchymal stem cells derived from the umbilical cord were used. The levels of CD4 and CD8 were determined by flow cytometry. The concentrations of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-10 (IL-10) were determined using an enzyme-linked immunosorbent assay (ELISA). The immunoregulatory index (CD4/CD8) and the inflammatory activity index ((TNF-α) + (IL-1β) + (IL-6) / (IL-10)) were also calculated. Results and Discussion. After simulating the mechanical injury, a disproportionate increase in the levels of T-helper and T-suppressor cells was observed, leading to a significant decrease in the immunoregulatory index, as well as a significant increase in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). The concentration of the anti-inflammatory cytokine (IL-10) increased less intensively in the initial stages and had decreased by day 28, which resulted in a significant increase in the inflammatory activity index. The use of corrective agents was accompanied by a less pronounced increase in cellular immunity indicators and the normalization of their ratio, as well as a significantly smaller increase in the levels of pro-inflammatory and anti-inflammatory cytokines, with the inflammatory activity index normalizing by day 28. Conclusion. In the context of mechanical corneal injury, the administration of mesenchymal stem cells effectively modulates the immune response in the eye, reduces the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), and increases the level of the anti-inflammatory cytokine IL-10, thereby normalizing the level of inflammatory activity.
References
Domingo E., Moshirfar M., Zeppieri M. та ін. Corneal Abrasion. StatPearls [Internet]. Treasure Island (FL) : StatPearls Publishing, 2025 Jan [оновлено 2024 Jan 8] . URL: https://www.ncbi.nlm.nih.gov/books/NBK532960/.
Aalam W., Barry M., Alharbi M., Tamur S., Wazzan A., Edward D.P. Diagnosis and Management of Corneal Abrasion Perception of (Primary Health Care Physicians and Emergency Physicians) and its Determinants in Saudi Arabia – A Survey. Middle East Afr J Ophthalmol. 2021 Jul‑Sep. Т. 28, № 3. С. 151–158.
Wipperman J. L., Dorsch J. N. Evaluation and management of corneal abrasions. Am Fam Physician. 2013 Jan 15. Т. 87, № 2. С. 114–120.
Smith D., Keith W., Stack L. The Epidemiology and Diagnosis of Penetrating Eye Injuries. Acad. Emerg. Med. 2002. Т. 9, № 3. С. 209–213.
Gavrylyak I., Zhaboiedov D., Greben N., Tykhomyrov A. Tear lactoferrin and ceruloplasmin levels in patients with traumatic and recurrent corneal erosions. J. ophthalmol. (Ukraine) [Internet]. 2024 Feb 29 [цит. 2024 Apr 10]. № 1. С. 8–14.
Wilson S. E. Corneal wound healing. Exp Eye Res. 2020. Т. 197. С. 108089. DOI: 10.1016/j. exer.2020.108089.
Streilein J. Immune regulation and the eye: a dangerous compromise. FASEB J. 1987. Т. 1, № 3. С. 199–208.
Нестерук С., Кліщ І. Особливості змін показників гуморального та клітинного імунітету в крові кролів за умов механічної непроникаючої травми рогівки. Експерим. клін. мед. 2020. Т. 78, № 1. С. 46–51.
Sharif Z., Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management. Rom J Ophthalmol. 2019. Т. 63, № 1. С. 15–22.
Lopez‑Paniagua M., Mesia R., Khandhadia S. Immunologic response of the rabbit cornea to xenogenic and allogeneic mesenchymal stem cells. Investig. Ophthalmol. Vis. Sci. 2009. Т. 50, № 6. С. 2872. DOI: https://iovs.arvojournals.org/article. aspx?articleid=2364193.
Mohan R. R., Kempuraj D., D'Souza S., Ghosh A. Corneal stromal repair and regeneration. Prog Retin Eye Res. 2022. Т. 91. С. 101090 DOI: 10.1016/j. preteyeres.2022.101090.
Dong C., He M., Hu Y., Liang Y. Ex vivo cultivated retinal pigment epithelial cell transplantation for the treatment of rabbit corneal endothelial dysfunction. Eye Vis. 2023. Вип. 10. С. 17. DOI: 10.1186/ s40662‑023‑00351‑4.
Arnalich‑Montiel F., Pastor S., Blázquez‑ Martínez A., Fernández‑Delgado J., Nistal M., Alió J.L. Adipose‑derived stem cells are a source for cell therapy of the corneal stroma. Stem Cells. 2008. Т. 26, № 2. С. 570–579. DOI: 10.1634/stemcells.2007‑0552.
Nicula C., Szabo I., Ivan O. Stem cells treatment in the ocular surface regeneration. Rom J Ophthalmol. 2017. Т. 61, № 4. С. 239–243.
Call M., Elzarka M., Kunesh M., Hura N., Birk D. E., Kao W. W. Therapeutic efficacy of mesenchymal stem cells for the treatment of congenital and acquired corneal opacity. Mol Vis. 2019. № 25. С. 415–426.
Yao L., Li Z. R., Su W. R., Li Y. P., Lin M. L., Zhang W. X., Liu Y., Wan Q., Liang D. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS One. 2012. Т. 7, № 2. С. e30842. DOI: 10.1371/journal.pone.0030842.
European convention for the protection of vertebrate animals used for experimental and other scientific purposes / Council of Europe. Strasbourg: Council of Europe, 1986. № 123. С. 52.
Науково‑практичні рекомендації з утримання лабораторних тварин та роботи з ними / Кожем’якін Ю. М., Хромов О. С., Філоненко М. А., Сайфетдінова Г. А. Київ : Авіцена, 2002. 156 с.
Шмир С. М., Кліщ І. М. Цитокіновий статус сироватки крові кролів з механічною непроникаючою травмою рогівки та корекція з використанням строми ксенорогівки, отриманої методом децелюляризації. Med. Clin. Chem. 2023. № 2. DOI: 10.11603/ mcch.2410‑681X.2023.i2.13968.
Rihawi S., Frentz M., Schrage N. F. Emergency treatment of eye burns: which rinsing solution should we choose? Graefes Arch Clin Exp Ophthalmol. 2006. Т. 244, № 7. С. 845–854.
Турчин М. В., Кліщ І. М. Особливості імунологічної реактивності за умови експериментальної механічної непроникаючої травми рогівки при консервативному і хірургічному лікуванні. Journal of Health Sciences. 2014. Т. 4, № 11. С. 397–402.
Torres P., Kijlstra A. The role of cytokines in corneal immunopathology. Ocular Immunol. Inflamm. 2009. С. 9–24.
Boehm N. Proinflammatory cytokine profiling of tears from dry eye patients by means of antibody microarrays. Investig. Ophthalmol. 2011. Т. 52. С. 7725–7730.
Шмир С., Кліщ І. Показники прозапальних цитокінів у водянистій волозі передньої камери ока кролів з механічною травмою рогівки та використанні строми ксенорогівки свині, отриманої методом децелюляризації для корекції. Grail of Science. 2023. Т. 32. С. 390–391. DOI: 10.36074/ grail-of-science.13.10.2023.074.
Kumar A., Yun H., Funderburgh M. L., Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res. 2022. Т. 87. С. 101011. DOI: 10.1016/ j.preteyeres.2021.101011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Medical and Clinical Chemistry

This work is licensed under a Creative Commons Attribution 4.0 International License.