INFLUENCE OF DOXORUBICIN ON THE DEVELOPMENT OF OXIDATIVE-NITROSATIVE STRESS IN THE LIVER OF RATS UNDER CONDITIONS OF CHRONIC ALCOHOLIC HEPATITIS
DOI:
https://doi.org/10.11603/mcch.2410-681X.2024.i2.14761Keywords:
liver, oxidative stress, nitrosative stress, chronic alcoholic hepatitis, AMPK, doxorubicinAbstract
Introduction. Chronic alcohol consumption leads to oxidative-nitrosative liver injury, which induces the release of cytokines and growth factors, leading to activation of hepatic stellate cells and fibrosis. Modern studies have revealed a close connection between AMP-activated protein kinase and fibrogenesis.
The aim of the study – to determine the effect of inhibition of AMP-activated protein kinase by the administration of doxorubicin on the development of oxidative-nitrosative stress in the liver of rats under conditions of long-term administration of ethanol.
Research Methods. Experiments were performed on 24 white, sexually mature male Wistar rats, weighing 180-220 g. Chronic alcoholic hepatitis was modeled by the method of forced intermittent alcoholization according to Yu.M. Stepanov (2017). Doxorubicin was administered at a dose of 1.25 mg/kg IV 4 times a week throughout the experiment, which lasted 63 days. The activity of NO-synthase isoforms, the concentration of nitrite and peroxynitrite, the activity of arginase, superoxide dismutase and catalase, the concentration of malondialdehyde, oxidation-modified proteins, nitrosothiols and sulfide anion, and the production of superoxide anion were determined in the homogenate of the liver of rats. The significance of the differences was assessed by the Mann-Whitney U-test at p<0.05.
Results and Discussion. Administration of doxorubicin under the conditions of chronic alcoholic hepatitis modeling reduced the activity of the inducible isoform of NO-synthase by 4 times, the activity of superoxide dismutase by 1.95 times and increased the activity of catalase by 1.77 times in the liver of rats compared to chronic alcoholic hepatitis. Under these conditions, the concentration of malonic dialdehyde in the liver increased by 1.71 times, the production of superoxide anion radical increased by 1.3 times, the concentration of peroxynitrite increased by 1.9 times, sulfide anion decreased by 2.11 times, while OMP in the liver of rats decreased by 1.98 times compared to chronic alcoholic hepatitis.
Conclusion. Administration of doxorubicin against the background of chronic alcoholic hepatitis limits the oxidative modification of liver proteins and the production of nitric oxide from the inducible isoform of NO-synthase.
References
Mykytenko, A.O., Akimov, O.Y., & Neporada, K.S. (2022). Influence of lipopolysaccharide on the development of oxidative-nitrosative stress in the liver of rats under conditions of chronic alcohol intoxication. Fiziol Zh, 68 (2), 29-35. DOI: 10.15407/fz68.02.029
Hu, Y.B., Ye, X.T., Zhou, Q.Q., & Fu, R.Q. (2018). Sestrin 2 attenuates rat Hepatic Stellate Cell (HSC) activation and liver fibrosis via an mTOR/AMPK-dependent mechanism. Cell Physiol Biochem, 51 (5), 2111-2122. DOI: 10.1159/000495829.
Wang, Y., Li, C., Gu, J., Chen, C., Duanmu, J., Miao, J., Yao, W., Tao, J., Tu, M., Xiong, B., Zhao, L., & Liu Z. (2020). Celastrol exerts anti-inflammatory effect in liver fibrosis via activation of AMPK-SIRT3 signalling. J Cell Mol Med, 24 (1), 941-953. DOI: 10.1111/jcmm.14805.
Jiang, S., Li, T., Yang, Z., Yi, W., Di, S., Sun, Y., Wang, D., & Yang, Y. (2017). AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev, 38, 18-27. DOI: 10.1016/j.arr. 2017.07.001.
Liang, Z., Li, T., Jiang, S., Xu, J., Di, W., Yang, Z., Hu, W., & Yang, Y. (2017). AMPK: a novel target for treating hepatic fibrosis. Oncotarget, 8 (37), 62780-62792. DOI: 10.18632/oncotarget.19376.
Jo, H.K., Kim, G.W., Jeong, K.J., Kim, D.Y., & Chung, S.H. (2014). Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway. Biol Pharm Bull, 37 (8), 1341-1351. DOI: 10.1248/bpb.b14-00281.
Yang, W., Park, I.J., Yun, H., Im, D.U., Ock, S., Kim, J., Seo, S.M., Shin, H.Y., Viollet, B., Kang, I., Choe, W., Kim, S.S., & Ha, J. (2014). AMP-activated protein kinase α2 and E2F1 transcription factor mediate doxorubicin-induced cytotoxicity by forming a positive signal loop in mouse embryonic fibroblasts and non-carcinoma cells. J Biol Chem, 289 (8), 4839-4852. DOI: 10.1074/jbc.M113.496315.
Mykytenko, A.O., Akimov, O.Y., Shevchenko, O.M., & Neporada, K.S. (2023). Role of sulfide anion in the development of chronic alcoholic hepatitis under the conditions of modulation of adenosine monophosphate kinase – a correlational study. Eur J Clin Exp Med, 21 (3), 567-575. DOI: 10.15584/ejcem.2023.3.24.
Mykytenko, A.О., Akimov, O.Y., Yeroshenko, G.A., & Neporada, K.S. (2023). Influence of doxorubicin on the extracellular matrix of the liver of rats under conditions of chronic alcoholic hepatitis. Regulatory Mechanisms in Biosystems, 14 (2), 278-283. DOI: 10.15421/022341.
Yelins’ka, A.M., Akimov, O.Ye., & Kostenko, V.O. (2019). Role of AP-1 transcriptional factor in development of oxidative and nitrosative stress in periodontal tissues during systemic inflammatory response. Ukr. Biochem. J., 91 (1), 80-85. DOI: 10.15407/ubj91.01.080.
Mykytenko, A.O., Akimov, O.Y., Yeroshenko, G.A., Neporada K.S. (2022). Influence of NF-κB on the development of oxidative-nitrosative stress in the liver of rats under conditions of chronic alcohol intoxication. Ukr. Biochem. J., 94 (6), 57-66. DOI: 10.15407/ubj94.06.057.
Mykytenko, A.O, Akimov, O.Y., Yeroshenko, G.A. (2021). Peculiarities of connective tissue degradation in rat’s liver on early terms of chronic alcoholic hepatitis modelling. World of Medicine and Biology, 1 (75), 197-200. DOI: 10.26724/2079-8334-2021-1-75-197-200.
Gérard-Monnier, D., Erdelmeier, I., Régnard, K., Moze-Henry, N., Yadan, J. C., & Chaudière, J. (1998). Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chemical research in toxicology, 11 (10), 1176-1183. DOI: 10.1021/tx9701790.
Gaston, B., Reilly, J., Drazen, J.M., Fackler, J., Ramdev, P., Arnelle, D., Mullins, M.E., Sugarbaker, D.J., Chee, C., Singel, D.J., Loscalzo, J., & Stamler, J.S. (1993). Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proceedings of the National Academy of Sciences of the United States of America, 90 (23), 10957-10961. DOI: 10.1073/pnas. 90.23.10957.
Sugahara, S., Suzuki, M., Kamiya, H., Yamamuro, M., Semura, H., Senga, Y., Egawa, M., & Seike, Y. (2016). Colorimetric Determination of Sulfide in Microsamples. Anal Sci., 32 (10), 1129-1131. DOI: 10.2116/analsci.32.1129.
Mykytenko, A.O., Akimov, O.Y., Yeroshenko, G.A., Neporada, K.S. (2022). The role of sulfide anion in the development of oxidative stress in the liver under conditions of chronic alcoholic hepatitis. World of Medicine and Biology, 3 (81), 224-226. DOI: 10.26724/2079-8334-2022-3-81-223-226.
Kostenko, V.O., & Tsebrzhins’kii, O.I. (2000). Production of superoxide anion radical and nitric oxide in renal tissues sutured with different surgical suture material. Fiziol Zh, 46 (5), 56-62. (In Ukrainian)
Timm, K.N., & Tyler, D.J. (2020). The Role of AMPK Activation for Cardioprotection in Doxorubicin-Induced Cardiotoxicity. Cardiovasc Drugs Ther, 34(2), 255-269. DOI: 10.1007/s10557-020-06941-x.
Nassif, R.M., Chalhoub, E., Chedid, P., Hurtado-Nedelec, M., Raya, E., Dang, P.M., Marie, J.C., & El-Benna, J. (2022). Metformin Inhibits ROS Production by Human M2 Macrophages via the Activation of AMPK. Biomedicines, 10 (2), 319. DOI: 10.3390/biomedicines10020319.
Liu, W., Zhao, Y., Wang, G., Feng, S., Ge, X., Ye, W., Wang, Z., Zhu, Y., Cai, W., Bai, J., & Zhou, X. (2022). TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling. Redox Biol, 53, 102344. DOI: 10.1016/j.redox.2022.102344.
Ahmed, O.M., Elkomy, M.H., Fahim, H.I., Ashour, M.B., Naguib, I.A., Alghamdi, B.S., Mahmoud, H.U.R., & Ahmed, N.A. (2022). Rutin and Quercetin Counter Doxorubicin-Induced Liver Toxicity in Wistar Rats via Their Modulatory Effects on Inflammation, Oxidative Stress, Apoptosis, and Nrf2. Oxid Med Cell Longev, 2022, 2710607. DOI: 10.1155/2022/2710607.
Geng, C., Cui, C., Wang, C., Lu, S., Zhang, M., Chen, D., & Jiang, P. (2020). Systematic Evaluations of Doxorubicin-Induced Toxicity in Rats Based on Metabolomics. ACS Omega, 6 (1), 358-366. DOI: 10.1021/acsomega.0c04677.
Wang, J., Yao, L., Wu, X., Guo, Q., Sun, S., Li, J., Shi, G., Caldwell, R.B., Caldwell, R.W., & Chen, Y. (2021). Protection against Doxorubicin-Induced Cardiotoxicity through Modulating iNOS/ARG 2 Balance by Electroacupuncture at PC6. Oxid Med Cell Longev, 2021, 6628957. DOI: 10.1155/2021/6628957.
Yarana, C., Siwaponanan, P., Maneechote, C., Khuanjing, T., Ongnok, B., Prathumsap, N., Chattipakorn, S.C., Chattipakorn, N., & Pattanapanyasat, K. (2022). Extracellular Vesicles Released after Doxorubicin Treatment in Rats Protect Cardiomyocytes from Oxidative Damage and Induce Pro-Inflammatory Gene Expression in Macrophages. Int J Mol Sci, 23 (21), 13465. DOI: 10.3390/ijms232113465.
Orci, L.A., Kreutzfeldt, M., Goossens, N., Rubbia-Brandt, L., Slits, F., Hammad, K., Delaune, V., Oldani, G., Negro, F., Clément, S., Gonelle-Gispert, C., Buhler, L.H., Toso, C., & Lacotte, S. (2020). Tolerogenic properties of liver macrophages in non-alcoholic steatohepatitis. Liver Int, 40 (3), 609-621. DOI: 10.1111/liv.14336.
Tanaka, Y., Nagoshi, T., Yoshii, A., Oi, Y., Takahashi, H., Kimura, H., Ito, K., Kashiwagi, Y., Tanaka, T.D., & Yoshimura, M. (2021). Xanthine oxidase inhibition attenuates doxorubicin-induced cardiotoxicity in mice. Free Radic Biol Med, 162, 298-308. DOI: 10.1016/j.freeradbiomed.2020.10.303.
Villalobos-García, D., & Hernández-Muñoz, R. (2017). Catalase increases ethanol oxidation through the purine catabolism in rat liver. Biochem Pharmacol, 137, 107-112. DOI: 10.1016/j.bcp.2017.05.011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Medical and Clinical Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.