COMBINED EFFECT OF PYRAZOLE-CONTAINING BISPHOSPHONATES AND VITAMIN D3 IN THE CORRECTION OF MINERAL METABOLISM IN ALIMENTARY OSTEOPOROSIS IN RATS
DOI:
https://doi.org/10.11603/mcch.2410-681X.2020.v.i3.11513Keywords:
pyrazole-containing bisphosphonates, alimentary osteoporosis, mineral metabolism, vitamin D3, 25OHDAbstract
Introduction. According to the WHO, osteoporosis ranks central position among all known diseases as a cause of premature disability and mortality, and therefore the development of effective treatment strategies for this disease is one of the priority research areas for scientific and medical institutions. One of these areas is the development of new modern bisphosphonates and the study of their therapeutic effects in animal models.
The aim of the study – to explore the effectiveness of combined action of synthesized nitrogen-containing bisphosphonates (pyrazole-containing analogs), which inhibit osteoclast activity and bone resorption, and vitamin D3 – the main regulator of bone remodeling and osteogenesis, in the correction of mineral metabolism disturbances accompanying the development of osteoporosis.
Research Methods. The study of the biological effectiveness of the synthesized pyrazole-containing bisphosphonates was carried out on female Wistar rats (1 month old, initial weight (90±5) g). Alimentary osteoporosis was induced by keeping the rats for 30 days on a D-hypovitaminosis diet according to GOST 11222-65, balanced in calcium and phosphorus. Pyrazole-containing bisphosphonates (1.7 mg/kg) and cholecalciferol (400 IU/kg body weight) were used per os as corrective compounds. Serum 25OHD was tested by ELISA. The quantitative analysis of the components of mineral metabolism in the blood serum and bone tissue was determined by routine biochemical methods.
Results and Discussion. Our pyrazole-containing bisphosphonates inhibited the process of bone tissue demineralization (resorption) and enhanced mineral metabolism in rats with alimentary osteoporosis with various efficiency. After bisphosphonate supplementation, the content of calcium and inorganic phosphate increased, while the activity of alkaline phosphatase and its isoenzymes in blood serum decreased. The ash content and the levels of calcium and phosphorus in the ash of the tibia have been increased. The combination of pyrazole-containing bisphosphonates with vitamin D3, which normalizes the serum 25OHD content and provides the synthesis of biologically active hydroxylated forms of cholecalciferol, has been effective in the correction of mineral metabolism abnormalities in osteoporotic rats.
Conclusions. The study of the combined action of vitamin D3 and bisphosphonate I-12, as the substance with the highest biological efficiency in enhancing the bone remodeling through a balanced combination of bone resorption and formation, is most promising for further research.
References
Xiao, W., Wang, Y., Pacios, S., Li, S., & Graves, D.T. (2016). Cellular and molecular aspects of bone remodeling. Front Oral Biol., 18, 9-16. DOI: https://doi.org/10.1159/000351895
Nagy, V., & Penninger, J.M. (2015). The RANKL-RANK Story. Gerontology, 61 (6), 534-542. DOI: https://doi.org/10.1159/000371845
Langdahl, B.L., & Andersen, J.D. (2018). Treatment of osteoporosis: Unmet needs and emerging solutions. J. Bone Metab., 25 (3), 133-140. DOI: https://doi.org/10.11005/jbm.2018.25.3.133
Gaiko, G.V., Kalashnikov, A.V., & Brusko, A.T. (2008). Vitamin D i kostnaya sistema [Vitamin D and bone system]. Kyiv: Knyha plius [in Russian].
Drake, M.T., Cremers, S., Russell, R.G., & Bilezikian J.P. (2019). Drugs for the treatment of metabolic bone diseases. Br. J. Clin. Pharmacol., 85 (6), 1049-1051. DOI: https://doi.org/10.1111/bcp.13857
Roelofs, A.J., Thompson, K., Ebetino, F.H., Rogers, M.J., & Coxon F.P. (2010). Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Curr. Pharm. Des., 16 (27), 2950-2960. DOI: https://doi.org/10.2174/138161210793563635
Pivnyuk, V.M., Sharykina, N.I., Dekhtyar, T.V., Komisarenko, S.V., ..., Chekhun, V.F. (2007). Mebifon – efektyvnyi vitchyznianyi preparat hrupy bisfosfonativ [Mebifon – an effective domestic bisphosphonic drug]. Onkolohiia – Oncology, 9 (2), 145-150 [in Ukrainian].
Kolmas, J., Sobczak, M., Olędzka, E., Nałęcz-Jawecki, G., Dębek, C. (2014). Synthesis, Characterization and in Vitro Evaluation of New Composite Bisphosphonate Delivery Systems. Int. J. Mol. Sci., 15 (9), 16831-16847. DOI: https://doi.org/10.3390/ijms150916831
Clézardin, P., Benzaïd, I., & Croucher, P.I. (2011). Bisphosphonates in preclinical bone oncology. Bone, 49 (1), 66-70. DOI: https://doi.org/10.1016/j.bone.2010.11.017
Plotkin, L.I., Buvinic S., & Balanta-Melo J. (2020). In vitro and in vivo studies using non-traditional bisphosphonates. Bone, 134 (115301). DOI: https://doi.org/10.1016/j.bone.2020.115301
Drake, M.T., & Cremers, S. C. (2010). Bisphosphonate therapeutics in bone disease: the hard and soft data on osteoclast inhibition. Mol. Interv., 10 (3), 141-152. DOI: https://doi.org/10.1124/mi.10.3.5
Reyes, C., Hitz M., Prieto-Alhambra, D., & Abrahamsen, B. (2016). Risks and Benefits of Bisphosphonate Therapies. J. Cell Biochem., 117 (1), 20-28. DOI: https://doi.org/10.1002/jcb.25266
Ebetino, F.H., Hogan, A.L., Sun, S., …, Russell, R.G.G. (2011). The relationship between the chemistry and biological activity of the bisphosphonates. Bone, 49 (1), 20-33. DOI: https://doi.org/10.1016/j.bone.2011.03.774
Martin, T.J. (2013). Historically significant events in the discovery of RANK/RANKL/OPG. World J. Orthop., 4 (4), 186-197. DOI: https://doi.org/10.5312/wjo.v4.i4.186
Liu W., Zhang X. (2015). Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues. Mol. Med. Rep., 5 (11), 3212-3218. DOI: https://doi.org/10.3892/mmr.2015.3152
Baud'huin, M., Duplomb, L., Teletchea, S., Lamoureux, F., Ruiz-Velasco, C., & Heymann, D. (2015). Osteoprotegerin: multiple partners for multiple functions. Cytokine Growth Factor Rev., 24 (5), 401-409.
Anderson, P.H. (2017). Vitamin D activity and metabolism in bone. Curr. Osteoporos. Rep., 15 (5), 443-449. DOI: https://doi.org/10.1007/s11914-017-0394-8
Dimitrov, V., Salehi-Tabar, R., Beum-Soo, A., & White, J.H. (2014). Non-classical mechanisms of transcriptional regulation by the vitamin D receptor: Insights into calcium homeostasis, immune system regulation and cancer chemoprevention. Journal of Steroid Biochemistry & Molecular Biology, 144 (A), 74-80. DOI: https://doi.org/10.1016/j.jsbmb.2013.07.012
Yang, L., Ma, J., Zhang, X., Fan, Y., & Wang, L. (2012). Protective role of the vitamin D receptor. Cellular Immunology, 279 (2), 160-166. DOI: https://doi.org/10.1016/j.cellimm.2012.10.002
Dyce, B.J., & Bessman, S.P. (1973). A rapid nonenzimatic assay for 2,3-DPG in multiple specimens of blood. Arch. Environ. Health, 27 (2), 112-115. DOI: https://doi.org/10.1080/00039896.1973.10666331
Komisarenko, S.V., Apukhovska, L.I., Riasniy, V.M., Kalashnikov, A.V., & Veliky, M. M. (2011). Efektyvnist biofarmatsevtychnoho preparatu “Mebivid” u poperedzhenni porushen obminu vitaminu D3 ta kaltsiiu za alimentarnoho osteoporozu [“Mebivid” biopharmaceutical preparation efficacy against vitamin D3 and calcium metabolism disorders in alimentary osteoporosis]. Biotekhnolohiia acta – Biotechnologia Acta, 4 (1), 74-81 [in Ukrainian].
Plekhanov, B. (1989). Shchelochnaya fosfataza: sovremennoye sostoyaniye voprosa [Alkaline phosphatase: state of the art]. Laboratornoye delo – Laboratory Work, 11, 4-7 [in Russian].
http://accelrys.com/products/databases/bioactivity/mddr.htm.
Ivonin, S.P., Kurpil’, B.B., Rusanov, E.B., Grygorenko, O.O., & Volochnyuk, D.M. (2014). N-Alkylhydrazones of aliphatic ketones in the synthesis of 1,3,4-trisubstituted non-symmetric pyrazoles. Tetrahedron Lett., 55, 2187-2189. DOI: https://doi.org/10.1016/j.tetlet.2014.02.058
Riasniy V.M., Apukhovska L.I., Veliky M.M., Shymanskyy I.O., Labudzynskyi D.O., & Komisarenko S.V. (2012). Imunomoduliuiucha diia vitaminu D3 ta bisfosfonativ pry alimentarnomu osteoporozi v shchuriv [Immunomodulatory effects of vitamin D3 and bisphosphonates in nutritional osteoporosis in rats. Ukr. Biokh. Zhurn. – The Ukrainian Biochemical Journal, 84 (2), 73-80 [in Ukrainian].
Zhang, С., Miller, C.L., Brown, E.M., & Yang, J.J. (2015). The calcium sensing receptor: from calcium sensing to signaling. Sci. China Life Sci., 58 (1), 14-27. DOI: https://doi.org/10.1007/s11427-014-4779-y
Tang, S., Deng, X., Jiang, J., Kirberger, M., & Yang, J.J. (2020). Design of Calcium-Binding Proteins to Sense Calcium. Molecules, 5 (9), 2148. DOI: https://doi.org/10.3390/molecules25092148
Bate, N., Caves, R.E., Skinner, S.P., Goult, B.T., Basran, J., Mitcheson, J.S., & Vuister, G.W. (2018). A novel mechanism for calmodulin-dependent inactivation of transient receptor potential Vanilloid 6. Biochemistry, 57 (18), 2611–2622. DOI: https://doi.org/10.1021/acs.biochem.7b01286
Ramasamy, I. (2008). Inherited disorders of calcium homeostasis. Clin. Chim. Acta, 394 (1-2), 22-41. DOI: https://doi.org/10.1016/j.cca.2008.04.011
Zhang, Y., Fang, F., Tang, J., Jia, L., Feng,Y., Xu, P., & Faramand, A. (2019). Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ, 366 (l4673). DOI: https://doi.org/10.1136/bmj.l4673
Anderson, P.H., Lam, N.N., Turner, A.G., Davey, R.A., Kogawa, M., Atkins, G.J., & Morris, H.A. (2013). The pleiotropic effects of vitamin D in bone. J. Steroid Biochem. Mol. Biol., 136, 190-194. DOI: https://doi.org/10.1016/j.jsbmb.2012.08.008
Ryan, J.W., Anderson, P.H., Turner, A.G., & Morris, H.A. (2013). Vitamin D activities and metabolic bone disease. Clin. Chim. Acta, 425, 148-152. DOI: https://doi.org/10.1016/j.cca.2013.07.024
Milat, F., & Ebeling, P.R. (2016). Osteoporosis treatment: a missed opportunity. Med J Aust., 205 (4), 185-190. DOI: https://doi.org/10.5694/mja16.00568
Kogawa, M., Findlay, D.M., Anderson, P.H., & Atkins, G.J. (2013). Modulation of osteoclastic migrationby metabolism of 25(OH)-vitamin D3. J. Steroid Biochem. Mol. Biol., 136, 59-61. DOI: https://doi.org/10.1016/j.jsbmb.2012.09.008
Zarei, A., Morovat, A., Javaid, K., & Brown, C.P. (2016). Vitamin D receptor expression in human bone tissue and dose-dependent activation in resorbing osteoclasts. Bone Res., 4 (16030). DOI: https://doi.org/10.1038/boneres.2016.30
Kim, H., Baek, S., Hong, S.M., Lee, J., Jung, S.M., Lee, J., Cho, M., Kwok, S.K., & Park. S.H. (2020). 1,25-dihydroxy vitamin D3 and interleukin-6 blockade synergistically regulate rheumatoid arthritis by suppressing interleukin-17 production and osteoclastogenesis. J. Korean Med. Sci., 35 (6): e40.