Загальна характеристика шляхів активації кіназ JNK

Автор(и)

  • A. L. Zahayko
  • O. A. Krasilnikova
  • A. B. Kravchenko

DOI:

https://doi.org/10.11603/mcch.2410-681X.2016.v0.i4.7289

Ключові слова:

c-jun N-термінальні протеїнкінази, мітогенактивовані протеїнкінази, активні форми кисню, стрес ендоплазматичного ретикулума, жирні кислоти, метилгліоксаль, сфінголіпіди.

Анотація

c-Jun N-термінальні протеїнкінази (JNK) – представники сімейства мітогенактивованих протеїнкіназ (МАР-кіназ) – активуються у відповідь на дію різноманітних факторів, серед яких виділяють оксидативний, тепловий, осмотичний стрес, дію на клітини цитокінів та факторів росту і багато інших. Їх активація залучена в патогенез інсулінорезистентності, цукрового діабету та супутніх патологій, що визначає вибір JNK як терапевтичної мішені при створенні нових препаратів.

Метою даної роботи було проаналізувати й узагальнити інформацію про шляхи активації JNK, а також про основні клітинні метаболіти, які беруть участь у цьому процесі.

На даний час встановлено існування основних шляхів активації JNK, серед яких запуск МАР-кіназного каскаду, опосередкований взаємодією лігандів з рецепторами на плазматичній мембрані, утворення активних форм кисню, а також стрес ендоплазматичного ретикулума. Серед клітинних метаболітів до активації JNK залучені метилгліоксаль, лізо- і сфінголіпіди, жирні кислоти.

У клітині одночасно існує кілька головних механізмів активації ферменту. Деякі метаболіти, зокрема вільні жирні кислоти і лізоліпіди, мають також свій шлях активації ферменту. В активації JNK спостерігається тканинна специфічність, що важливо враховувати при розробці нових інгібіторів JNK.

Посилання

Cuadrado A. Mechanisms and functions of p38 MAPK signalling. Biochem / A. Cuadrado, A. R. Nebreda // J. 2010. – 429(3). – P. 403–417.

p38α suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway / L. Hui, L. Bakiri, A. Mairhorfer [et al.] // Nat. Genet. – 2007. – 39. – P. 741–749.

Network motifs in JNK signaling / V. Sehgal, P. T. Ram // Genes. Cancer. 2013. – 4. – P. 409–413.

Kyriakis J. M. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update / J. M. Kyriakis, J. Avruch // Physio.l Rev. – 2012. 92(2). – P. 689–737.

Stress kinases in the modulation of metabolism and energy balance / E. Manieri, G. Sabio // J Mol. Endocrinol. – 2015. – 55(2). – P. 11–R22.

c-Jun N-terminal kinase inhibitors: a patent review (2010 – 2014) / M. Gehringer, F. Muth, P. Koch, S. A. Laufer Expert. Opin. Ther. Pat. – 2015. – 25(8). – P. 849–872.

C-Jun N-terminal kinase signalling pathway in response to cisplatin / D. Yan, G. An, M. T. Kuo // J. Cell Mo.l Med. – 2016. – 20(11). – P. 2013–2019.

Šrámek J. Kinase signaling in apoptosis induced by saturated fatty acids in pancreatic β-cells / J. Šrámek, V. Němcová-Fürstová, J. Kovář // Int. J. Mol. Sci. – 2016. – 17(9). – P. E1400.

Lenna S. Endoplasmic reticulum stress and endothelial dysfunction / S. Lenna, R. Han, M. Trojanowska / IUBMB Life. – 2014. – 66(8). – P. 530–537.

Involvement of oxidative stress in suppression of insulin biosynthesis under diabetic conditions / H. Kaneto, T. A. Matsuoka // Int. J. Mol. Sci. – 2012. –13(10). – P. 13680–13690.

A central role for JNK in obesity and insulin resistance / J. Hirosumi, G. Tuncman, L. Chang [et al.] // Nature. – 2002. – 420. – P. 333–336.

Bogoyevitch M. A. Inhibitors of c-Jun N-terminal kinases: JuNK no more? / M. A. Bogoyevitch, P. G. Arthur // Biochim. Biophys. Acta. – 2008. 1784(1). – P. 76–93.

c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges / M. A. Bogoyevitch, K. R. W. Ngoei, T. T. Zhao [et al.] // Biochimica et Biophysica Acta. – 2010. – 1804(3). – P. 463–475.

MAP kinase pathways / M. Qi, E. A. Elion // J. Cell Sci. – 2005. – 118(Pt 16). – P. 3569–3572.

Boomer J. S. Functional interactions of HPK1 with adaptor proteins / J. S. Boomer, T.-H. Tan // J. Cell Biochem. – 2005. – 95(1). – P. 34–44.

Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76 / J. Bubeck Wardenburg, R. Pappu, J. Y. Bu [et al.] // Immunity. – 1998. – 9(5). – P. 607–616.

JNK Signaling in Apoptosis / D. N. Dhanasekaran, E. P. Reddy // Oncogene. – 2008. – 27(48). – P. 6245–6251.

Glucose and fatty acids synergize to promote B-cell apoptosis through activation of glycogen synthase kinase 3β independent of JNK activation / K. Tanabe, Y. Liu, S. D. Hasan [et al.] // PLoS One. – 2011. – 6(4). – P. e18146.

Different properties of SEK1 and MKK7 in dual phosphorylation of stress-induced activated protein kinase SAPK/JNK in embryonic stem cells / H. Kishimoto, K. Nakagawa, T. Watanabe [et al.] // J. Biol. Chem. – 2003. – 278(19). – P. 16595–16601.

Moon J. Reassembly of JIP1 scaffold complex in JNK MAP kinase pathway using heterologous protein interactions / J. Moon, S.-H. Park // PLoS One. – 2014. – 9(5). – P. e96797.

Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways / Y. Son, Y.-K. Cheong, N.-H. Kim [et al.] // J. Signal Transduc. – 2011. – 79 – P. 2639.

JNKs, insulin resistance and inflammation: A possible link between NAFLD and coronary artery disease / G. Tarantino, A. Caputi // World J. Gastroenterol. – 2011. – 17(33). – P. 3785–3794.

Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death / C. Bonny, A. Oberson, S. Negri [et al.] // Diabetes. – 2001. – 50(1). – P. 77–82.

Whitmarsh A. J. The JIP family of MAPK scaffold proteins / A. J. Whitmarsh // Biochem. Soc. Trans. – 2006. – 34(Pt 5). – P. 828–832.

Methylglyoxal, a reactive glucose metabolite, enhances autophagy flux and suppresses proliferation of human retinal pigment epithelial ARPE-19 cells / Y. C. Chang, M. C. Hsieh, H. J. Wu [et al.] // Toxicol In Vitro. – 2015. – 29(7). – P. 1358–1368.

Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3 / N. Kelkar, S. Gupta, M. Dickens, R. J. Davis // Mol. Cell Biol. – 2000. – 20(3). – P. 1030–1043.

A scaffolding protein that tethers JNK/p38MAPK signaling modules and transcription factors / C. M. Lee, D. Onesime, C. D. Reddy [et al.] // Proc. Natl. Acad. Sci. USA. – 2002. – 99(22). – P. 14189–14194

Liou G.-Y. Reactive oxygen species in cancer / G.-Y. Liou, P. Storz // Free Radic. Res. – 2010. – 44. – P. 479–496.

Storz P. Mitochondrial ROS—radical detoxification, mediated by protein kinase D / P. Storz // Trends Cell Biol. – 2007. – 17. – P. 13–18.

Yin F. Metabolic triad in brain aging: mitochondria, insulin/IGF-1 signalling and JNK signalling / F. Yin, T. Jiang, E. Cadenas // Biochem. Soc. Trans. – 2013. – 41(1). – P. 101–105.

The Role of Glutathione S-transferase P in signaling pathways and S-glutathionylation / K. D. Tew, Y. Manevich, C. Grek [et al.] // Cancer Free Radic. Biol. Med. – 2011. – 51(2). – P. 299–313.

Glucose and fatty acids synergize to promote B-cell apoptosis through activation of glycogen synthase kinase 3β independent of JNK activation / K. Tanabe, Y. Liu, S. D. Hasan [et al.] // PLoS One. – 2011. – 6(4). – P. e18146.

Bansal M. Oxidative Stress Mechanisms and their Modulation. Springer / M. Bansal, N. Kaushal // New Dehli. – 2014. – 345 p.

Pae Reactive oxygen species in the activation of MAP kinases / Y. Son, S. Kim, H. T. Chung, H. O. Methods // Enzymol. – 2013. – 528. – P. 27–48.

Kitamura M. Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces / M. Kitamura // Am. J. Physiol. Renal Physiol. – 2008. – 295(2). – P. F323–F334.

Zhang K. Identification and characterization of endoplasmic reticulum stress-induced apoptosis in vivo / K. Zhang, D. J. Kaufman // Methods Enzymol. – 2008. – 442. – P. 395–419.

Inagi R. Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury / R. Inagi // Nephron. Exp. Nephrol. – 2009. – 112(1). – P. e1–e9.

IRE1 signaling affects cell fate during the unfolded protein response / J. H. Lin, H. Li, D. Yasumura [et al.] // Science. – 2007. – 318. – P. 944–949.

Ron D. How IRE1 reacts to ER stress / D. Ron, S. R. Hubbard // Cell. –2008. – 132. – P. 24–26.

Malhi H. Endoplasmic reticulum stress in liver disease / H. Malhi, R. J. Kaufman // J. Hepatol. – 2011. – 54. – P. 795–809.

Davis R. J. Signal transduction by the JNK group of MAP kinases / R. J. Davis // Cell. – 2000. – 103. – P. 239–252.

Weinberg J. M. Lipotoxicity / J. M. Weinberg // Kidney Int. – 2006. – 70. – P. 1560–1566.

Capurso C. From excess adiposity to insulin resistance: the role of free fatty acids / C. Capurso, A. Capurso // Vascul. Pharmacol. – 2012. – 57(2-4). – P. 91–97.

Ibrahim S. H. Who pulls the trigger: JNK activation in liver lipotoxicity? / S. H. Ibrahim, G. J. Gores // J. Hepatol. – 2012. – 56(1). – P. 17–19.

Kupffer cells: increasingly significant role in nonalcoholic fatty liver disease / Z. Wenfeng, W. Yakun, M. Di [et al.] // Ann. Hepatol. – 2014. – 13(5). – P. 489–495.

Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth / K. A. Harvey, C. L. Walker, T. M. Pavlina [et al.] // Clin. Nutr. – 2010. – 29(4). – P. 492–500.

Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaining de novo ceramide synthesis / L. Martínez, S. Torres, A. Baulies [et al.] // Oncotarget. – 2015. – 6(39). – P. 41479–41496.

Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis / Y. Akazawa, S. Cazanave, J. L. Mott [et al.] // J. Hepatol. – 2010. – 52(4). – P. 586–593.

Oleic acid-induced hepatic steatosis is coupled with downregulation of aquaporin 3 and upregulation of aquaporin 9 via activation of p38 signaling / L. Y. Gu, L. W. Qiu, X. F. Chen [et al.] // Horm. Metab. Res. – 2015. – 47(4). – P. 259–264.

Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals / Y. Ni, L. Zhao, H. Yu [et al.] // EBio. Medicine. – 2015. – 2(10). – P. 1513–1522.

Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis / K. Kakisaka, S. C. Cazanave, C. D. Fingas [et al.] // Am. .J Physiol. Gastrointest. Liver Physiol. – 2012. – 302(1). – P. G77–G84.

Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue / N. Kawasaki, R. Asada, A. Saito [et al.] // Sci. Rep. – 2012. – 2. – P. 799.

Malhi H. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease / H. Malhi, G. J. Gores // Semin. Liver Dis. – 2008. – 28(4). – P. 360–369.

Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis / J. Seeßle, G. Liebisch, G. Schmitz [et al.] // Biochim. Biophys. Acta. – 2015. – 1851(5). – P. 549–565.

Role of the mixed-lineage protein kinase pathway in the metabolic stress response to obesity / S. Kant, T. Barrett, A. Vertii [et al.] // Cell Rep. – 2013. – 4(4). – P. 681–688.

Kaplowitz N. Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity / S. Win, T. A. Than, B. H. Le. [et al.] // J. Hepatol. – 2015. – 62(6). – P. 1367–1374.

Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: implications for nonalcoholic steatohepatitis / W. Stremmel, S. Staffer, A. Wannhoff [et al.] // FASEB J. – 2014. – 28(7). – P. 3159–3170.

Lysophosphatidylcholine triggers TLR2- and TLR4-mediated signaling pathways but counteracts LPS-induced NO synthesis in peritoneal macrophages by inhibiting NF-κB translocation and MAPK/ERK phosphorylation / A. B. Carneiro, B. M. Iaciura, L. L. Nohara [et al.] // PLoS One. – 2013. – 8(9). – P. e76233.

Biomarkers of morbid obesity and prediabetes by metabolomic profiling of human discordant phenotypes / S. Tulipani, M. Palau-Rodriguez, A. Miñarro Alonso [et al.] // Clin. Chim. Acta. – 2016. – 463. – P. 53–61.

Baicalein, an active component of Scutellaria baicalensis Georgi, prevents lysophosphatidylcholine-induced cardiac injury by reducing reactive oxygen species production, calcium overload and apoptosis via MAPK pathways / Chen H. M., Hsu J. H., Liou S. F. [et al.] // BMC Complement. Altern. Med. – 2014. – 14. – P. 233.

Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes / M. S. Han, S. Y. Park, K. Shinzawa [et al.] // J. Lipid Res. – 2008. – 49(1). – P. 84–97.

Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis / K. Kakisaka, S. C. Cazanave, C. D. Fingas [et al.] // Am. J. Physiol. Gastrointest. Liver Physiol. – 2012. – 302(1). – P. G77–G84.

Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates / G. Solinas, W. Naugler, F. Galimi [et al.] // Proc.Natl.Acad.Sci. USA. – 2006. – 103(44). – P. 16454–16459.

Possible effect of lysophosphatidic acid on cell proliferation and involvement of lysophosphatidic acid and lysophosphatidic acid receptors in mechanical stretch-induced mitogen-activated protein kinase / Y. Kawashima, N. Kushida, S. Kokubun [et al.] // Int. J. Urol. – 2015. – 22(8). – P. 778–784.

Attenuation of LPS-induced cyclooxygenase-2 and inducible NO synthase expression by lysophosphatidic acid in macrophages / H. Y. Chien, C. S. Lu, K. H. Chuang [et al.] / Innate Immun. – 2015. – 21(6). – P. 635–646.

Choi S. Sphingolipids in high fat diet and obesity-related diseases / S. Choi, A. J. Snider // Mediators Inflamm. – 2015. – 2015. – P. 520–618.

Role of ceramides in nonalcoholic fatty liver disease / M. Pagadala, T. Kasumov, A. J. McCullough [et al.] // Trends Endocrinol. Metab. – 2012. – 23(8). – P. 365–371.

Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation / M. A. Park, G. Zhang, A. P. Martin [et al.] // Cancer Biol. Ther. – 2008. – 7(10). – P. 1648–1662.

Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice / S. Liangpunsakul, Y. Rahmini, R. A. Ross [et al.] // Am. J. Physiol. Gastrointest. Liver Physiol. – 2012. – 302(5). – P. G515–G523.

Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome / G. Yang, L. Badeanlou, J. Bielawski [et al.] // Am. J. Physiol. Endocrinol. Metab. – 2009. – 297(1). – P. E211–E224.

Ceramide induces human hepcidin gene transcription through JAK/STAT3 pathway / S. Lu, S. K. Natarajan, J. L. Mott [et al.] // PLoS One. – 2016. 11(1). – P. e0147474.

Marí M. Sphingolipid signaling and liver diseases / M. Marí, Fernández- J. C. Checa // Liver Int. – 2007. – 27(4). – P. 440–450.

Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate / N. Ueda // Int. J. Mol. Sci. – 2015. – 16(3). – P. 5076–5124.

C Decoding cell death signals in liver inflammation / Brenner, L. Galluzzi, O. Kepp, G. Kroemer // J. Hepatol. – 2013. – 59(3). – P. 583–594.

Sphingosine kinase 1 inhibition improves lipopolysaccharide/D-galactosamine-induced acute liver failure by inhibiting mitogen-activated protein kinases pathway / T. Tian, W. Tian, F. Yang [et al.] // United Eur. Gastroenterol. J. – 2016. – 4(5). – P. 677–685.

AP-1 regulates sphingosine kinase 1 expression in a positive feedback manner in glomerular mesangial cells exposed to high glucose / K. Huang, J. Huang, C. Chen [et al.] // Cell Signal. – 2014. – 26(3). – P. 629–638.

The glyoxalase pathway: the first hundred years... and beyond / M. S. Silva, R. A. Gomes, A. E. Ferreira [et al.] // Biochem. J. – 2013. – 453(1). – P. 1–15.

The glyoxalase pathway: the first hundred years... and beyond / M. S. Silva, R. A. Gomes, A. E. Ferreira [et al.] // Biochem. J. – 2013. – 453(1). – P. 1–15.

Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation / G. Vistoli, D. De Maddis, A. Cipak [et al.] // Free Rad. Res. – 2013. – 47(S1). – P. 3–27.

1,2-dicarbonyl compounds in commonly consumed foods / J. Degen, M. Hellwig, T. Henle // J. Agricult. and Food Chem. – 2012. – 60(28). – P. 7071–7079.

δ-Tocopherol prevents methylglyoxal-induced apoptosis by reducing ROS generation and inhibiting apoptotic signaling cascades in human umbilical vein endothelial cells / M. Do, S. Kim, S. Y. Seo [et al.] // Food Funct. – 2015. – 6(5). – P. 1568–1577.

Tanshinone IIA protects against methylglyoxal-induced injury in human brain microvascular endothelial cells / W. J. Zhou, Q. F. Gui, Y. Wu, Y. M. Yang // Int. J. Clin. Exp. Med. – 2015. – 8(2). – P. 1985–1992.

Glyoxal and methylglyoxal induce aggregation and inactivation of ERK in human endothelial cells / A. A. Akhand, K. Hossain, M. Kato [et al.] // Free Radic. Biol. Med. – 2001. – 31(10). – P. 1228–1235.

Methylglyoxal mediates vascular inflammation via JNK and p38 in human endothelial cells / H. Yamawaki, K. Saito, M. Okada, Y. Hara // Am. J. Physiol. Cell Physiol. – 2008. – 295(6). – P. C1510–C1507.

Methylglyoxal impairs insulin secretion of pancreatic β-Cells through increased production of ROS and mitochondrial dysfunction mediated by upregulation of UCP2 and MAPKs / J. Bo, S. Xie, Y. Guo [et al.] // J. Diabetes Res. – 2016. – 202. – P. 98–54.

Fructose-induced stress signaling in the liver involves methylglyoxal / Y. Wei, D. Wang, G. Moran [et al.] // Nutr. Metab. (Lond). – 2013. – 10. – P. 32.

Methylglyoxal activates NF-κB nuclear translocation and induces COX-2 expression via a p38-dependent pathway in synovial cells / C. C. Lin, C. M. Chan, Y. P. Huang [et al.] // Life Sci. – 2016. – 149. – P. 25–33.

Methylglyoxal-induced neuroinflammatory response in in vitro astrocytic cultures and hippocampus of experimental animals / J. M. Chu, D. K. Lee, D. P. Wong [et al.] // Metab. Brain Dis. – 2016. – 31(5). – P. 1055–1064.

Neuroprotective effect of sulforaphane against methylglyoxal cytotoxicity / C. Angeloni, M. Malaguti, B. Rizzo [et al.] // Chem. Res. Toxicol. – 2015. – 28(6). – P. 1234–1245.

##submission.downloads##

Опубліковано

2017-02-17

Як цитувати

Zahayko, A. L., Krasilnikova, O. A., & Kravchenko, A. B. (2017). Загальна характеристика шляхів активації кіназ JNK. Медична та клінічна хімія, (4), 105–113. https://doi.org/10.11603/mcch.2410-681X.2016.v0.i4.7289

Номер

Розділ

ОГЛЯДИ