AMANITA PHALLOIDES POISONING: MECHANISM OF TOXICITY AND PATHOGENESIS OF THE INJURY

(LITERATURE REVIEW)

Authors

  • I. P. Kuzmak I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY

DOI:

https://doi.org/10.11603/mcch.2410-681X.2020.i4.11749

Keywords:

Amanita phalloides, mushroom poisoning, hepatotoxicity, amatoxins, phalloidins

Abstract

Introduction. Amanita phalloides is one of the most dangerous poisonous fungi. Amanita phalloides toxins are strong poisons that have a hepatonephrotropic effect, and due to the lack of specific antidotes to them, the treatment of poisoning by this fungus remains an important problem. Amanita phalloides toxins are divided into two groups: phallotoxins, which affect the endoplasmic reticulum, and amatoxins, which act more slowly, but are almost 20 times more toxic than the former. Amatoxins are the major toxins of Amanita phalloides and one of the most dangerous natural toxins that cause liver, kidney, and, in general, multiorgan failure due to inhibition of protein synthesis at the level of transcription within enterocytes, hepatocytes, and proximal tubular cells of the kidney. After taking Amanita phalloides, amatoxin often induces massive necrosis of liver cells with a high mortality rate, which sometimes reaches up to 90 %.

Significant importance in the pathogenesis of ammanite-phalloidin damage is given to disorders of protein metabolism due to inhibition of RNA polymerase II cells, direct inhibitory effect on the activity of already synthesized enzymes and indirect effects on enzyme systems through substrates.

Another mechanism of α-amanitin toxicity is the formation of reactive oxygen species, which leads to damage associated with oxidative stress. Lipid peroxidation can contribute to massive necrosis and severe hepatotoxicity.

This paper presents a detailed overview of the poisoning of the main toxins of the Amanita phalloides. The article discusses the biochemistry of amatoxin, phalloidin and other toxins of Amanita, mechanisms of toxicity, pathogenesis of poisoning by Amanita phalloides.

The paper uses general scientific research methods, including expert-analytical review of scientific sources, analysis and synthesis of literature data.

The aim of the study – to analyze current literature sources on the biochemistry of Amanita phalloides toxins, mechanisms of toxicity, pathogenesis of Amanita phalloides poisoning.

Conclusions. The analysis of literature sources substantiates the relevance of the study of the mechanisms of toxicity and pathogenesis of toxins of the Amanita phalloides in order to identify metabolic disorders, which is necessary to predict the severity of the pathological process, search and development of treatments for amatoxin-phaloidin poisoning.

References

Barros, L., Ferreira, M., Queirós, B., Ferreira, F.R., & Baptista, P. (2007). Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mush­rooms and their antioxidant activities. Food Che­mistry, 103 (2), 413-419. DOI: 10.1016/j.foodchem. 2006.07.038

Tavassoli, M., Afshari, A., Arsene, A.L., Mégarbane, B., Dumanov, J., & Paoliello, at al. (2019). Toxicological profile of Amanita virosa - A narrative review. Toxicol Rep., 9 (6), 143-150. DOI: 10.1016/j.toxrep.2019.01.002.

Kumari, D., Reddy, M. S., & Upadhyay, R. C. (2011). Nutritional composition and antioxidant activities of 18 different wild Cantharellus mushrooms of North­western Himalayas. Food Science and Technology International, 17 (6), 557-567. DOI: 10.1177/ 1082013211427620ю

Elsayed, E.A., El Enshasy, H., Wadaan, M.A., & Aziz, R. (2014). Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm., Mediators of Inflammation, 2014. DOI: 10.1155/2014/805841.

Nedashkivskyi, S.M. (2014). Otruiennia hrybamy: diahnostyka, patofiziolohiia, klinichni proiavy ta nevid­kladna dopomoha. Suchasni pidkhody [Mushroom poisoning: diagnosis, pathophysiology, clinical mani­festations and emergency care. Modern approaches]. Medytsyna nevidkladnykh staniv – Medicine of Emer­gencies, 2 (57), 95-101 [in Ukrainian].

Escudié, L., Francoz, C., Vinel, J.P., Moucari, R., Cournot, M., Paradis, V., et al. (2007). Amanita phalloides poisoning: reassessment of prognostic factors and indi­cations for emergency liver transplantation. J. Hepatol., 46 (3), 466-473. DOI: 10.1016/j.jhep.2006.10.013.

Bonnet, S., & Basson, P.W. (2002). The toxicology of Amanita phalloides, Homeopathy, 91 (4), 249-254, DOI: 10.1054/homp.2002.0056.

Garcia, J., Costa, V.M., Carvalho, A., Baptista, P., de Pinho, P.G., de Lourdes Bastos, M., & Carvalho, F. (2015). Amanita phalloides poisoning: Mechanisms of toxicity and treatment. Food Chem. Toxicol., 86, 41-55. DOI: 10.1016/j.fct.2015.09.008.

Antoniuk, V.O. (2005). Vyvchennia vuhlevodnoi spetsyfichnosti hemolitychnoho lektynu blidoi pohanky (Amanita phalloides (Vaill. Fr.) Secr) [Study on carbo­hydrate specificity of hemolytic lectin from death-cap mushroom (Amanita phalloides (Vaill. Fr.) Secr)]. Bio­polimery i klityna – Cell Biology Biopolym. Cell, 21 (4), 319-325. DOI: 10.7124/bc.0006F8.

Ferenc, T, Lukasiewicz, B., Ciećwierz, J., & Ko­wal­czyk, E. (2009). Zatrucia muchomorem sromotnikowym (Amanita phalloides). Med. Pr., 60 (5), 415-426.

Deng, Y., & Qiu, L. (2019). Mushroom poisoning in children: A five-year review. Iran J. Pediatr., 29 (1), e65262. DOI: 10.5812/ijp.65262.

Wieland T. (1986) Molecular pathology of the Amanita peptides. In: Peptides of Poisonous Amanita Mushrooms. Springer Series in Molecular Biology. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-71295-1_8.

Vetter, J., & Vetter, Sz. (2014). Death cap poiso­ning and the animals. Literature review. Magyar Alla­torvosok Lapja, 136 (12), 750-758. Retrieved from: https://www.researchgate.net/publication/288240271_Death_cap_poisoning_and_the_animals_Literature_review.

Kaya, E., Yilmaz, I., Sinirlioglu, Z.A., Karahan, S., Bayram, R., Yaykasli, K. O., Colakoglu, S., Saritas, A., & Severoglu, Z. (2013). Amanitin and phallotoxin concen­tration in Amanita phalloides var. alba mushroom. Toxicon: Official Journal of the International Society on Toxino­logy, 76, 225-233. Retrieved from: https://doi.org/10.1016/ j.toxicon.2013.10.008.

Govorushko, S., Rezaee, R., Dumanov, J., & Tsatsakis, A. (2019). Poisoning associated with the use of mushrooms: A review of the global pattern and main characteristics. Food and Chemical Toxicology: An Inter­national Journal published for the British Industrial Biological Research Association, 128, 267-279. Retrieved from: https://doi.org/10.1016/j.fct.2019.04.016.

Shier, W.T. (2020). Handbook of toxinology CRC Press. Retrieved from: https://books.google.com.ua/books?id=ogn-DwAAQBAJ&hl=uk.

Lutsik-Kordovsky, M.D. Stasyk, T.V., & Stoika, R.S. (2001). Analysis of cytotoxicity of lectin and non-lectin proteins from Amanita mushrooms. Experimental Onco­logy, 23 (1), 43-45. Retrieved from: https://exp-oncology.com.ua/wp/wp-content/uploads/magazine/157.pdf?upload=

Nayak, A.P., Green, B.J., & Beezhold, D.H. (2013). Fungal hemolysins. Medical Mycology, 51 (1), 1-16. DOI: 10.3109/13693786.2012.698025.

Dadpour, B., Tajoddini, S., Rajabi, M., & Afsha­ri, R. (2017). Mushroom poisoning in the northeast of Iran; a retrospective 6-year epidemiologic study. Emerg. (Tehran), 5 (1), e23. Epub 2017 Jan 10. PMID: 28286830; PMCID: PMC5325892.

Himmelmann, A., Mang, G., & Schnorf-Huber, S. (2001). Lethal ingestion of stored Amanita phalloides mushrooms. Swiss Medical Weekly, 131 (41-42), 616-617.

Karlson-Stiber, C., & Persson, H. (2003). Cyto­toxic fungi-an overview. Toxicon: Official Journal of the International Society on Toxinology, 42( 4), 339-349. DOI: 10.1016/s0041-0101(03)00238-1.

Tang, S., Zhou, Q., He, Z., Luo, T, Zhang, P., & Cai, Q. et al (2016). Cyclopeptide toxins of lethal ama­nitas: compositions, distribution and phylogenetic impli­cation Toxicon, 120, 78-88. DOI: 10.1016/j.toxi­con.2016. 07.018 0041-0101.

Kuzmak, I.P., Klishch, IM., & Yaremchuk, O.Z. (2012). Dynamika pokaznykiv endohennoi intoksykatsii u shchuriv riznoho viku za umov hostroho otruiennia toksynamy blidoi pohanky [Dynamics of endogenous intoxication in rats of different ages under conditions of acute poisoning by toxins of the pale toadstool]. Naukovyi visnyk Uzhhorodskoho universytetu. Seriia: Biolohiia – Scientific Bulletin of Uzhhorod University. Series: Biology, 33, 154-157. Retrieved from: http://nbuv.gov.ua/UJRN/Nvuu_2012_33_24.

Letschert, K., Faulstich, H., Keller, D., & Keppler, D. (2006). Molecular characterization and inhibition of Amanitin uptake into human hepatocytes, Toxicological Sciences, 91 (1), 140-149. DOI: 10.1093/toxsci/kfj141.

Kuzmak, I.P. (2018). Deiaki pokaznyky bilkovoho obminu v shchuriv, otruienykh blidoiu pohankoiu [Some indicators of protein metabolism in rats poisoned by Amanita phalloides]. Medychna ta klinichna khimiia – Medical and Clinical Chemistry, 20 (4). DOI: 10.11603/mcch.2410-681X.2018.v0.i4.9825.

Zheleva, A. (2013). Phenoxyl radicals formation might contribute to severe toxicity of mushrooms toxin alpha-amanitin- an electron paramagnetic resonance study. TJS, 11, 33-38. Retrieved from: http://www.uni-sz.bg/tsj/vol11N1_2013/A.Jeleva.pdf.

Arima, Y., Nitta, M., Kuninaka, S., Zhang, D., Fujiwara, T., Taya, Y., Nakao, M., & Saya, H. (2005). Transcriptional blockade induces p53-dependent apop­tosis associated with translocation of p53 to mitochondria. J. Biol. Chem., 280 (19), 19166-19176. DOI: 10.1074/jbc.M410691200.

West, P.L., Lindgren, J., & Horowitz, B.Z.. (2009). Amanita smithiana mushroom ingestion: a case of de­layed renal failure and literature review. Journal of Medical Toxicology, 5 (1), 32-38. DOI: 10.1007/BF03160979.

Wei-Shun Yang, Chih-Hao Lin, Jenq-Wen Huang, & Cheng-Chung Fang. (2006). Acute renal failure caused by mushroom poisoning. Journal of the Formosan Medical Association, 105 (3), 263-267. DOI: 10.1016/S0929-6646(09)60317-X.

Diaz, J.H. (2018). Amatoxin-containing mushroom poisonings: Species, toxidromes, treatments, and outco­mes. Wilderness Environ. Med., 29 (1), 111-118. DOI: 10.1016/j.wem.2017.10.002.

Horowitz, B.Z., & Moss, M.J. (2020). Amatoxin mushroom toxicity. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK431052/?re­port=reader#_NBK431052_pubdet_

Published

2021-02-12

How to Cite

Kuzmak, I. P. (2021). AMANITA PHALLOIDES POISONING: MECHANISM OF TOXICITY AND PATHOGENESIS OF THE INJURY: (LITERATURE REVIEW). Medical and Clinical Chemistry, (4), 114–123. https://doi.org/10.11603/mcch.2410-681X.2020.i4.11749

Issue

Section

REVIEWS