MORPHOLOGICAL CHANGES IN THE CAPACITIVE LINK OF THE HEMOMICROCIRCULATORY BED OF LUNG OF GUINEA PIGS SENSITIZED WITH OVALBUMIN

Authors

DOI:

https://doi.org/10.11603/1811-2471.2021.v.i1.11691

Keywords:

venule, microcirculation, experimental allergic inflammation, lung, ovalbumin, guinea pig

Abstract

An urgent issue in medicine today is the reaction of lungs microvessels with chronic respiratory allergic diseases, because the full functioning of tissues and cells depends on the microvessels.

The aim –  to study the morphological changes in the vessels of the capacitive link of the microcirculatory bed of the lung of guinea pigs sensitized with ovalbumin.

Material and Methods. We have studied the lung of 48 guinea pigs, using histological and morphometric methods, under conditions of experimental ovalbumin-induced allergic inflammation, simulated by three times subcutaneous sensitization and subsequent 8-day intranasal inhalation of ovalbumin. To assess the structural and functional state of postcapillary and muscular venules the inner diameter of the vessels was determined.

Results. A general regularity of the reactivity of the capacitive link of the hemomicrocirculatory bed of guinea pig lungs in experimental ovalbumin-induced allergic inflammation was established, consisted in the restructuring of postcapillary and muscle venules such as an increase in the diameter of their lumen and the permeability of their wall. More pronounced morphological changes were found in postcapillary venules in the early period of allergic inflammation, confirmed with the magnification factor, showed increase in the diameter of the lumen of postcapillary venules (1.7) in the first experimental group compared to the control.

Conclusions. Sensitization and inhalation allergization with ovalbumin leads to structural reorganization-vasodilation of the postcapillary and muscle venules of guinea pigs lungs, depended on the diameter of the vessels and the experiment duration and is a manifestation of a violation of the recovery and adaptation processes of microcirculation. The most pronounced changes appear during the early period of allergic inflammation in the postcapillary venules.

References

Hrebniak, M. P., & Fedorchenko, R. A. (2019). Influence of industrial atmospheric pollution on the development of pathology of respiratory organs. Pathologia, 16(1), 81—86. https://doi.org/10.14739/2310-1237.2019.1.166314

Syrcov, V. K., Voloshin, N. A., & Alieva, E. G. (2011). Perifericheskie organy immunnoj sistemy [Peripheral organs of the immune system]. Actual issues of pharmaceutical and medical science and practice, 24(1), 8–11. [In Russian] http://nbuv.gov.ua/UJRN/apfimntp_2011_24_1_4

Lu, S., Li, H., Gao, R., Gao, X., Xu, F., Wang, Q., Lu, G., Xia, D., & Zhou, J. (2015). IL-17A, But Not IL-17F, Is Indispensable for Airway Vascular Remodeling Induced by Exaggerated Th17 Cell Responses in Prolonged Ovalbumin-Challenged Mice. The Journal of Immunology, 194(8), 3557–3566. https://doi.org/10.4049/jimmunol.1400829

Hnatjuk, M. S., & Tatarchuk, L. V. (2018). Morphometric analysis remodeling vessels hemomicrocirculatory bed of jejunum at resections of liver. Reports of Morphology, 24(1), 16–20. https://doi.org/10.31393/morphology-journal-2018-24(1)-03

Pronina, O. M., Koptev, M. M., Bilash, S. M., & Yeroshenko, G. A. (2018). Response of hemomicrocirculatory bed of internal organs on various external factors exposure based on the morphological research data. World of Medicine and Biology, 1(63), 153–157. https://doi.org/DOI 10.26.724 / 2079-8334-2018-1-63-153-157

Herasymiuk, I. E., & Vatsyk, M. O. (2019). Features of remodeling of blood vessels of rat lungs in applying different methods of fluid resuscitation after general dehydration. Bulletin of Problems Biology and Medicine, 1(2), 272-276. https://doi.org/10.29254/2077-4214-2019-1-2-149-272-276

Nebesna, Z. M., & Yeroshenko, G. A. (2015). Gistologichni ta gistoximichni zminy` legen` pry` ekspery`mental`nij termichnij travmi [Histological and histochemical changes of the lungs after experimental thermal trauma]. World of Medicine and Biology, 2(49), 141–145. [in Ukrainian]. https://womab.com.ua/ua/smb-2015-02-2/5084

Ha, E. H., Choi, J.-P., Kwon, H.-S., Park, H. J., Lah, S. J., Moon, K.-A., Lee, S.-H., Kim, I., & Cho, Y. S. (2019). Endothelial Sox17 promotes allergic airway inflammation. Journal of Allergy and Clinical Immunology, 144(2), 561-573. https://doi.org/10.1016/j.jaci.2019.02.034

Reichard, A., & Asosingh, K. (2019). Endothelial Cells in Asthma. Asthma - Biological Evidences. https://doi.org/10.5772/intechopen.85110

Adner, M., Canning, B. J., Meurs, H., Ford, W., Ramos Ramírez, P., van den Berg, M. P. M., Birrell, M. A., Stoffels, E., Lundblad, L. K. A., Nilsson, G. P., Olsson, H. K., Belvisi, M. G., & Dahlén, S.-E. (2020). Back to the future: re-establishing guinea pig in vivo asthma models. Clinical Science, 134(11), 1219–1242. https://doi.org/10.1042/cs20200394

Lambrecht, B. N., & Hammad, H. (2014). The immunology of asthma. Nature Immunology, 16(1), 45–56. https://doi.org/10.1038/ni.3049

Vasconcelos, L. H. C., Silva, M. da C. C., Costa, A. C., Oliveira, G. A. de, Souza, I. L. L. de, Queiroga, F. R., Araujo, L. C. da C., Cardoso, G. A., Righetti, R. F., Silva, A. S., da Silva, P. M., Carvalho, C. R. de O., Vieira, G. C., Tibério, I. de F. L. C., Cavalcante, F. de A., & Silva, B. A. da. (2019). A Guinea Pig Model of Airway Smooth Muscle Hyperreactivity Induced by Chronic Allergic Lung Inflammation: Contribution of Epithelium and Oxidative Stress. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.01547

Singh, B., Shinagawa, K., Taube, C., Gelfand, E. W., & Pabst, R. (2005). Strain-specific differences in perivascular inflammation in lungs in two murine models of allergic airway inflammation. Clinical and Experimental Immunology, 141(2), 223–229. https://doi.org/10.1111/j.1365-2249.2005.02841.x

Popko, S. S., Evtushenko, V. M., & Syrtsov, V. K. (2020). Influence of pulmonary neuroendocrine cells on lung homeostasis. Zaporozhye Medical Journal, 22(4), 568–575. https://doi.org/10.14739/2310-1210.4.208411

Cai, Z., Liu, J., Bian, H., & Cai, J. (2019). Albiflorin alleviates ovalbumin (OVA)-induced pulmonary inflammation in asthmatic mice. American journal of translational research, 11(12), 7300–7309.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943473/

Zemmouri, H., Sekiou, O., Ammar, S., El Feki, A., Bouaziz, M., Messarah, M., & Boumendjel, A. (2017). Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model. Pharmaceutical Biology, 55(1), 1561–1568.

https://doi.org/10.1080/13880209.2017.1310905

Antwi, A. O., Obiri, D. D., & Osafo, N. (2017). Stigmasterol Modulates Allergic Airway Inflammation in Guinea Pig Model of Ovalbumin-Induced Asthma. Mediators of Inflammation, 2017(2953930), 1–11.

https://doi.org/10.1155/2017/2953930

Published

2021-04-29

How to Cite

Popko, S. S. (2021). MORPHOLOGICAL CHANGES IN THE CAPACITIVE LINK OF THE HEMOMICROCIRCULATORY BED OF LUNG OF GUINEA PIGS SENSITIZED WITH OVALBUMIN. Achievements of Clinical and Experimental Medicine, (1), 111–118. https://doi.org/10.11603/1811-2471.2021.v.i1.11691

Issue

Section

Оригінальні дослідження