METHODS FOR THE TECHNICAL REGISTRATION OF SUSPECTED INFECTIOUS DISEASE OUTBREAKS REQUIRING INVESTIGATION

Authors

  • O. V. Pokryshko Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine https://orcid.org/0000-0001-9640-0786
  • V. S. Kopcha Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine https://orcid.org/0000-0001-9499-3733
  • T. I. Pyatkovskyy Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine https://orcid.org/0000-0003-1240-1680
  • H. I. Mykhailyshyn Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine
  • N. M. Olyinyk Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine
  • L. B. Romanyuk Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine https://orcid.org/0000-0002-8844-8082

DOI:

https://doi.org/10.11603/1681-2786.2025.3.15669

Keywords:

biosecurity; infectious outbreak; infectious disease; bioterrorism; biological weapons; information system; database; verification.

Abstract

Purpose: this paper reviews technical methods and approaches to detect and investigate suspicious outbreaks of infectious diseases located in a biologically prohibited area. It achieves the direction of early detection, collection, analysis and preservation of data with high biosafety. Materials and Methods. The paper outlines the criteria for identifying suspicious outbreaks, tools, use of UNMOVIC, database structure and investigation procedures. It describes historical examples of the use or release of biological agents that led to advances in verification methods. Results. Early warning systems for outbreaks and the spread of infectious diseases encompass a variety range of data sources, including health sector data, hospital data, social media platform data, statistical bureau data, meteorological department data, and wastewater monitoring systems. There is an increasing demand for resources to identify suspicious threats. Therefore, the development of an integrated information and analytical platform is critical for national security and ensuring the framework of biological and toxin weapons (BTWC). A multi-tiered system of classification, identification and storage of data was developed, which significantly reduced the volume of information and accelerated analysis. Along with increasing computational power and signal detection to improve the speed and efficiency of existing systems, artificial intelligence aids in the early detection of hot spots, their prevention, and epidemiological tracking. Considering the exceptional labor-intensive and continuous manual classification for disease surveillance, it provides simultaneous global coverage and hyperlocal situational awareness. Conclusions. Modern intelligent technologies, if properly implemented, can ensure effective investigation of emergency outbreaks. The creation of a single centralized database increases the ability to quickly respond to biological threats and takes into account the global biosecurity framework.

References

Khorram-Manesh A., Dulebenets M.A., Goniewicz K. Implementing public health strategies – the need for educational initiatives: a systematic review. Int. J. Environ. Res. Public Health. 2021. № 18(11). 5888. DOI: https://doi.org/10.3390/ijerph18115888

Андрейчин М.А., Копча, В.С. Біотероризм. Медична протидія. Тернопіль: Укрмедкнига, 2005. 300 с.

Meckawy, R., Stuckler, D., Mehta et al. Effectiveness of early warning systems in the detection of infectious diseases outbreaks: a systematic review. BMC public health, 2022. № 22(1). 2216. DOI: https://doi.org/10.1186/s12889-022-14625-4

McGowan, C.R., Takahashi, E., Romig, L. et al. Community-based surveillance of infectious diseases: a systematic review of drivers of success. BMJ global health. 2022. № 7(8), e009934. DOI: https://doi.org/10.1136/bmjgh-2022-009934

Конвенція про заборону розробки, виробництва та накопичення запасів бактеріологічної (біологічної) і токсинної зброї та про їх знищення. № 995_054. Редакція від 10.04.1972.

National workforce capacity to implement the essential public health functions, including a focus on emergency preparedness and response: Roadmap for aligning WHO and partner contributions. World Health Organization, 2022.

Zhu, P., Hu, J., Zhang, Y., Li, X. Enhancing Traceability of Infectious Diseases: A Blockchain-Based Approach. Information processing & management. 2021. № 58(4). 102570. DOI: https://doi.org/10.1016/j.ipm.2021.102570

Zarei, J., Dastoorpoor, M., Jamshidnezhad, A. et al. Regional COVID-19 registry in Khuzestan, Iran: A study protocol and lessons learned from a pilot implementation. Informatics in medicine unlocked. 2021. № 23. 100520. DOI: https://doi.org/10.1016/j.imu.2021.100520

Liscano, Y., Anillo Arrieta, L.A., Montenegro, J.F., Prieto-Alvarado, D., Ordoñez, J. Early Warning of Infectious Disease Outbreaks Using Social Media and Digital Data: A Scoping Review. International journal of environmental research and public health, 2025. № 22(7). 1104. DOI: https://doi.org/10.3390/ijerph22071104

Calleja, N., AbdAllah, A., Abad, N. et al. A Public Health Research Agenda for Managing Infodemics: Methods and Results of the First WHO Infodemiology Conference. JMIR infodemiology. 2021. №1(1), e30979. DOI: https://doi.org/10.2196/30979

Briand, S., Hess, S., Nguyen, T., Purnat, T.D. Infodemic Management in the Twenty-First Century. In T. D. Purnat (Eds.) et. al., Managing Infodemics in the 21st Century: Addressing New Public Health Challenges in the Information Ecosystem. Springer. 2023. 1–16. DOI: https://doi.org/10.1007/978-3-031-27789-4_1

Gontariuk, M., Krafft, T., Rehbock, C. et al. The European Union and Public Health Emergencies: Expert Opinions on the Management of the First Wave of the COVID-19 Pandemic and Suggestions for Future Emergencies. Frontiers in public health. 2021. № 9. 698995. DOI: https://doi.org/10.3389/fpubh.2021.698995

Barboza, P., Vaillant, L., Le Strat, Y. et al. Factors influencing performance of internet-based biosurveillance systems used in epidemic intelligence for early detection of infectious diseases outbreaks. PloS one. 2014. № 9(3). e90536. DOI: https://doi.org/10.1371/journal.pone.0090536

Abuhaloob, L., Purnat, T.D., Tabche, C., Atwan, Z., Dubois, E., Rawaf, S. Management of infodemics in outbreaks or health crises: a systematic review. Frontiers in public health. 2024. № 12. 1343902. DOI: https://doi.org/10.3389/fpubh.2024.1343902

Mremi, I.R., George, J., Rumisha, S.F., Sindato, C., Kimera, S.I., Mboera, L.E. Twenty years of integrated disease surveillance and response in Sub-Saharan Africa: challenges and opportunities for effective management of infectious disease epidemics. One health outlook. 2021. № 3(1). 22. DOI: https://doi.org/10.1186/s42522-021-00052-9

Olliaro, P., & Torreele, E. Global challenges in preparedness and response to epidemic infectious diseases. Molecular Therapy. 2022. № 30(5). Р. 1801–1809. DOI: https://doi.org/10.1016/j.ymthe.2022.02.022

Oeschger, T.M., McCloskey, D.S., Buchmann, R.M. et al. Early warning diagnostics for emerging infectious diseases in developing into late-stage pandemics. Accounts of Chemical Research. 2021. №54(19). Р. 3656–3666. DOI: https://doi.org/10.1021/acs.accounts.1c00383

Cheah, B.C.J., Vicente, C.R., Chan, K.R. Machine Learning and Artificial Intelligence for Infectious Disease Surveillance, Diagnosis, and Prognosis. Viruses. 2025. № 17(7). 882. DOI: https://doi.org/10.3390/v17070882

Freifeld, C.C., Mandl, K.D., Reis, B.Y., Brownstein, J. S. HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. Journal of the American Medical Informatics Association : JAMIA. 2008. № 15(2). Р. 150–157. DOI: https://doi.org/10.1197/jamia.M2544

Brownstein, J.S., Rader, B., Astley, C.M., & Tian, H. Advances in Artificial Intelligence for Infectious-Disease Surveillance. The New England journal of medicine, 2023. № 388(17). Р. 1597–1607. DOI: https://doi.org/10.1056/NEJMra2119215

Suvvari, T.K., & Kandi, V. Artificial intelligence enhanced infectious disease surveillance – A call for global collaboration. New microbes and new infections 2024. № 62. 101494. DOI: https://doi.org/10.1016/j.nmni.2024.101494

Kraemer, M.U.G., Tsui, J.L., Chang, S.Y. et al. Artificial intelligence for modelling infectious disease epidemics. Nature. 2025. № 638(8051). Р. 623–635. https://doi.org/10.1038/s41586-024-08564-w DOI: https://doi.org/10.1038/s41586-024-08564-w

Published

2025-10-20

How to Cite

Pokryshko, O. V., Kopcha, V. S., Pyatkovskyy, T. I., Mykhailyshyn, H. I., Olyinyk, N. M., & Romanyuk, L. B. (2025). METHODS FOR THE TECHNICAL REGISTRATION OF SUSPECTED INFECTIOUS DISEASE OUTBREAKS REQUIRING INVESTIGATION. Bulletin of Social Hygiene and Health Protection Organization of Ukraine, (3), 190–195. https://doi.org/10.11603/1681-2786.2025.3.15669

Issue

Section

Analytical reviews of scholarly sources