OXIDATIVE STRESS IN HUMAN THYROID GLAND UNDER IODINE DEFICIENCY NODULAR GOITER: FROM HARMLESSNESS TO HAZARD DEPENDING ON COPPER AND IODINE SUBCELLULAR DISTRIBUTION

  • H. Falfushynska I.Ya. Horbachevski Ternopil State Medical University
  • L. Gnatyshyna I.Ya. Horbachevski Ternopil State Medical University
  • A. Shulgai I.Ya. Horbachevski Ternopil State Medical University
  • V. Shidlovski I.Ya. Horbachevski Ternopil State Medical University
  • O. Stoliar Ternopil V. Hnatiuk National Pedagogical University

Abstract

Background. Thyroid disorders are the second most common endocrinopathies found in humans and animals. Determination of their key molecular markers presents a special interest.
Objective. We studied iodine and copper accumulation in nodular, paranodular and contralateral (not affected tissue by node) tissues of human thyroid gland in relation to the level of metal-binding proteins, potential antioxidants, and oxidative changes in tissue for this goal. Lower level of organificated iodine and higher level and mass fraction of inorganic iodine and copper in the nodular and paranodular tissue versus contralateral part of thyroid gland was established.
Results. The level of both metal-binding and apo-form of metallothioneins was higher. Content of reduced glutathione was lower in node-affected tissue compared to the contralateral part. Signs of oxidative stress (higher activity of superoxide dismutase, catalase, glutathione-transferase and level of oxyradicals) and cytotoxicity (higher cathepsin D activity, higher level of DNA strand breaks and glycolysis activation) in affected tissue were observed. The range of indice variability in paranodular tissue was smaller than in nodule compared to the parenchyma of contralateral part.
Conclusions. Excess of copper unbound to metallothionein in goitrous-changed tissue and high level of inorganic iodine could be the reason for elevated DNA fragmentation and increased lysosomal membrane permeability and activation of antioxidant defense. The main criterions of goiter formation were represented by low level of organificated iodine and high level of DNA damage in thyroid gland.

KEY WORDS: iodine deficiency nodular colloidal goiter, iodine, copper, metallothioneins, oxidative stress, cytotoxicity

Author Biographies

H. Falfushynska, I.Ya. Horbachevski Ternopil State Medical University
General Chemistry Department, chief of department
L. Gnatyshyna, I.Ya. Horbachevski Ternopil State Medical University
General Chemistry Department
A. Shulgai, I.Ya. Horbachevski Ternopil State Medical University
V. Shidlovski, I.Ya. Horbachevski Ternopil State Medical University
O. Stoliar, Ternopil V. Hnatiuk National Pedagogical University
Research Laboratory of Comparative Biochemistry and Molecular Biology

References

Giray B, Arnaud J, Sayek I, Favier A, Hincal F. Trace elements status in multinodular goiter. J Trace Elem Med Biol 2010; 24: 106-110.

Paschke R. Molecular pathogenesis of nodular goiter.Langenbecks Arch Surg 2011; 396: 1127-1136.

Uriu-Adams JY, Keen CL. Copper, oxidative stress, and human health. Mol Aspects Med 2005; 26: 268-298.

Фальфушинська ГІ, Гнатишина ЛЛ, Осадчук ДВ, Шідловський ВО, Столяр ОБ. Металодепонуюча функція та антиоксидантні властивості щитоподібної залози людей, хворих на йододефіцитний вузловий колоїдний зоб. Укр біохім журн 2011; 83: 92-97.

Stolyar OB, Loumbourdis NS, Falfushinska HI, Romanchuk LD. Comparison of metal bioavailability in frogs from urban and rural sites of Western Ukraine. Arch Environ ContamToxicol 2008; 54: 107-113.

Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011; 283: 65-87.

Maret W. Redox biochemistry of mammalian metallothionein. J Biol lnorg Chem 2011; 16: 1079-1086.

Ferrario C, Lavagni P, Gariboldi M, Miranda C, Losa M, Cleris L. et al. Metallothionein 1G acts as an oncosupressor in papillary thyroid carcinoma. Lab Invest 2008; 88: 474-481.

Viarengo A, Ponzano E, Dondero F, Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res 1997; 44: 69-84.

Suzuki KT. Purification of vertebrate metallothioneins. Method Enzymol 1991; 205: 252-263.

Falfushynska HI, Gnatyshyna LL, Stoliar OB. Population-related molecular responses on the effect of pesticides in Carassiusauratusgibelio. Comp Biochem Physiol 2012; 155 C: 396-406.

Kagi JHR, Schaffer A. Biochemistry of metallothionein. Biochemistry 1988; 27: 8509-8515.

Шідловський ВО, Столяр ОБ, Осадчук ДВ, Шідловський ОВ, Фальфушинська ГІ. Деклараційний патент на корисну модель № 45332 (UA), МПК G09B 23/28 (2009.01). Спосіб визначення концентрації йоду в біосубстраті / (Україна). Заявл. 24.04.09; опубл. 10.11.09, Бюл. №21.

Beauchamp C, Fridovich I. Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem 1971; 44: 276-287.

Aebi H. Catalase (in) Bergmeyer HU. (ed.) Methods of Enzymatic Analysis. Academic Press, London; 1974: 671-684.

Anderson ME. Determination of glutathione and glutathione disulfide in biological samples. Meth Enzymol 1985;113: 548-555.

Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2- vinylpyridine. Anal Biochem 1980; 106: 207-212.

Viarengo A, Burlando B, Cavaletto M, Marchi B, Ponzano E, Blasco J. Role of metallothionein against oxidative stress in the mussel Mytilusgalloprovincialis. Am J Physiol 1999; 277: 1612-1619.

Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249: 7130-7139.

Bergmeyer HU, Bernt E. Lactate-dehydrogenase, UV-assay with pyruvate and NADH (in) Bergmeyer HU. (ed.) Methods of enzymatic analysis. Vol 2. Academic Press, New York; 1974: 579.

Olive PL. DNA precipitation assay: a rapid and simple method for detecting DNA damage in mammalian cells. Environ Mol Mutagen 1988; 11: 487-495.

Dingle JT, Barrett AJ, Weston PD. Cathepsin D. Characteristics of immunoinhibition and the confirmation of a role in cartilage break down. Biochem J 1971; 123: 1-13.

Morita M, Noguchi S, Kawamoto H, Tajiri J, Tamaru M, Murakami N. Thyroglobulin and lactic dehydrogenase isozymes in cystic fluid of thyroid nodules. Endocr J 1994; 41: 227-233.

Vitale M, Di Matola T, D'Ascoli F, Salzano S, Bogazzi F, Fenzi G. et al. Iodide excess induces apoptosis in thyroid cells through a p53-independent mechanism involving oxidative stress. Endocrinology 2000; 141: 598-605.

Foley TP Jr. The relationship between autoimmune thyroid disease and iodine intake: a review. Endokrynol Pol 1992; 43, Suppl 1: 53-69.

Tsukuba T, Okamoto K, Yasuda Y, Morikawa W, Nakanishi H, Yamamoto K. New functional aspects of cathepsin D and cathepsin E. Mol Cells 2000; 10: 601-611.

Marchi B, Burlando B, Moore MN, Viarengo A. Mercury- and copper-induced lysosomal membrane destabilisation depends on [Ca2+]i dependent phospholipase A2 activation. Aquat Toxicol 2004; 66: 197-204.

Persson HL. Iron-dependent lysosomal destabilization initiates silica-induced apoptosis in murine macrophages. Toxicol Lett 2005; 159: 124-133.

Hidalgo J, Garvey JS, Armario AJ. On the metallothionein, glutathione and cysteine relationship in rat liver. Pharmacol Exp Ther 1990; 255: 554-564.

Thornalley PJ, Vasak M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 1985; 827: 36-44.

Published
2014-12-25
How to Cite
Falfushynska, H., Gnatyshyna, L., Shulgai, A., Shidlovski, V., & Stoliar, O. (2014). OXIDATIVE STRESS IN HUMAN THYROID GLAND UNDER IODINE DEFICIENCY NODULAR GOITER: FROM HARMLESSNESS TO HAZARD DEPENDING ON COPPER AND IODINE SUBCELLULAR DISTRIBUTION. International Journal of Medicine and Medical Research, 1(1). https://doi.org/10.11603/ijmmr.2413-6077.2015.1.2822