ANTIOXIDANT ENZYMES ACTIVITY IN EXPERIMENTAL ISCHEMIA-REPERFUSION INJURY

  • N. V. Volotovska I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE
  • T. V. Kashchak I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE
Keywords: ischemia-reperfusion injury, trauma, blood loss, hemostatic tourniquet, catalase, superoxide dismutase

Abstract

Background. Blood loss during civil and military limb trauma is the most common cause of preventable death. Complications due to the use of a hemostatic tourniquet are widely investigated nowadays. Therefore, the standards of the past have to be improved.

Objective. The aim of the research is to study the reaction of the enzyme chain of the liver antioxidant system in the presence of modifications of ischemia-reperfusion injury (IRI).

Methods. 210 white male-rats, aged 5-5.5 months, were used in the research. The dynamics of antioxidant enzymes activity catalase (Cat) and superoxide dismutase (SOD) in liver tissue in cases of modifications of ischemia-reperfusion injury (IRI) were studied. The period of investigation was in 24 hours, 3, 7, 14 days after the injury.

Results. In cases of simulated IRI the catalase level mainly decreased at each period of the experiment. The peak of SOD activity was evidenced on the 1st, 3rd or 7th days after the experimental IRI according to the degree of trauma severity. Thus, IRI combined with severe blood loss and mechanical trauma caused the severest affection of the antioxidant system. Even a single application of hemostatic tourniquet caused similar wavelike reactions at different times.

Conclusions. The development of IRI is accompanied by a significant depression of the liver antioxidant system. The most significant changes were evidenced in cases of IRI combined with blood loss and mechanical trauma, but even a single application of a tourniquet caused active response of the antioxidant enzymes.

Author Biographies

N. V. Volotovska, I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE

MD, Ph.D., Department of Physiology, Bioethics and Biosafety, I. Horbachevsky Ternopil National Medical University.

ORCID 0000-0003-4073-3148

T. V. Kashchak, I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE

assistant professor, Department of Physiology, Bioethics and Biosafety, I. Horbachevsky Ternopil National Medical University.

References

Khanna A, Cowled PA, Fitridge RA. Nitric oxide and skeletal muscle reperfusion injury: current controversies (research review). Journal of Surgical Research. 2005 Sep 1;128(1):98-107. doi: 10.1016/j.jss.2005.04.020

Wang WZ, Baynosa RC, Zamboni WA. Update on ischemia-reperfusion injury for the plastic surgeon: 2011. Plastic and reconstructive surgery. 2011 Dec1;128(6):685e-92e. doi: 10.1097/PRS.0b013e318230c57b

Van der Spuy L. Complications of the arterial tourniquet South Afr J Anaesth Analg. 2012;18(1):14-8. doi: 10.1080/22201173.2012.10872818

Dennis DA, Kittelson AJ, Yang CC, Miner TM, Kim RH, Stevens-Lapsley JE. Does Tourniquet Use in TKA Affect Recovery of Lower Extremity Strength and Function? A Randomized Trial. Clin Orthop Relat Res. 2016 Jan;474(1):69-77. doi: 10.1007/s11999-015-4393-8.

Cengiz M1, Ulker P, Meiselman HJ, Baskurt OK. Influence of tourniquet application on venous blood sampling for serum chemistry, hematological parameters, leukocyte activation and erythrocyte mechanical properties. Clin Chem Lab Med. 2009;47(6):769-76. doi: 10.1515/CCLM.2009.157.

Tuncali B, Boya H, Kayhan Z, Arac S.Tourniquet pressure settings based on limb occlusion pressure determination or arterial occlusion pressure estimation in total knee arthroplasty? A prospective, randomized, double blind trial Acta Orthop Traumatol Turc. 2018 Jul;52(4):256-60. doi: 10.1016/j.aott.2018.04.001.

Rao PR, Viswanath RK. Cardioprotective activity of silymarin in ischemia-reperfusion-induced myocardial infarction in albino rats. Exp Clin Cardiol. 2007;12(4):179-87.

Ligeret H, Brault A, Vallerand D, Haddad Y, Haddad PS. Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury. J Ethnopharmacol. 2008; 115(3): 507-14. doi: 10.1016/j.jep.2007.10.024

Senturk H, Kabay S, Bayramoglu G, Ozden H, Yaylak F, Yucel M, Olgun EG, Kutlu A. Silymarin attenuates the renal ischemia/reperfusion injury-induced morphological changes in the rat kidney. World J Urol. 2008; 26(4): 401-7. doi: 10.1007/s00345-008-0256-1

Hou YC, Liou KT, Chern CM, Wang YH, Liao JF, Chang S, et al. Preventive effect of silymarin in cerebral ischemia-reperfusion-induced brain injury in rats possibly through impairing NF-κB and STAT-1 activation. Phytomedicine. 2010 Oct;17(12):963-73. doi: 10.1016/j.phymed.2010.03.012

Görgülü A, Kiriş T, Unal F, Turkoğlu U, Küçük M, Cobanoğlu S. Superoxide dismutase activity and the effects of NBQX and CPP on lipid peroxidation in experimental spinal cord injury. Res Exp Med (Berl). 2000; 199(5): 285-93. doi: 10.1007/s004330050126

Ergün Yu, Üremis M, Kılınç M, Alıcı T. Antioxidant effect of Legalon(r) SIL in ischemia-reperfusion injury of rat skeletal muscle. Acta Cir. Bras. 2016; 31(4): 264-70. doi: 10.1590/S0102-865020160040000007

Işlekel S1, Işlekel H, Güner G, Ozdamar N. Alterations in superoxide dismutase, glutathione peroxidase and catalase activities in experimental cerebral ischemia-reperfusion. Res. Exp. Med.1999; 199: 67-76. doi: 10.1007/s004330050121

Valko M1, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004; 266(1-2): 37-56. doi: 10.1023/B:MCBI.0000049134.69131.89

Hudyma AA, Kashchak TV, Shepitko KV. Antioxidant-prooxidant and cytokine balance in the late period of combined trauma in the experiment. World of Medicine and Biology. 2019;1(67):42-7. doi: 10.26724/2079-8334-2019-1-67-42

Kim GW, Lewén A, Copin J, Watson BD, Chan PH. The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience. 2001;105(4):1007-18. doi: 10.1016/S0306-4522(01)00237-8

Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biology. 2010;8:1-13. doi: 10.1371/journal.pbio.1000479

Kofler J, Hurn PD., Traystman RJ. SOD1 overexpression and female sex exhibit region-specific neuroprotection after global cerebral ischemia due to cardiac arrest. J. Cereb Blood. Flow. Metab. 2005; 25:11-30. doi: 10.1038/sj.jcbfm.9600119

Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 2013;12:698-714. doi: 10.2174/1871527311312050015

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int.J Biochem. Cell. Biol. 2007;39:44-84. doi: 10.1016/j.biocel.2006.07.001

Yan BC, Park JH, Ahn JH, Kim IH, Park OK, Lee JC, et. al. Neuroprotection of posttreatment with risperidone, an atypical antipsychotic drug, in rat and gerbil models of ischemic stroke and the maintenance of antioxidants in a gerbil model of ischemic stroke. J. Neurosci. Res. 2014;92:795-807. doi: 10.1002/jnr.23360

Zhang YB, Kan MY, Yang ZH, Ding WL, Yi J, Chen HZ, Lu Y. Neuroprotective effects of N-stea­royltyrosine on transient global cerebral ischemia in gerbils. Brain Res. 2009; 1287: 146-56. doi: 10.1016/j.brainres.2009.06.070

Orlova EA, Lazarchuk OA. The activity of cytosol superoxide dismutase in rats’ tissues at para­pharmaceutics «Vin-Vita». Ukrainian Journal of Clinical and Laboratory Medicine. 2010;5(3):87-90 [in Russian].

Steare SE., Yellon DM. The protective effect of heat stress against reperfusion arrhythmias in the rat. J. Mol. Cell. Cardiol. 1993;25:71-81. doi: 10.1006/jmcc.1993.1163

Voronkov AV, Pozdnyakov DI, Ruri EI, Ribalko AE. Comparison of the antioxidant activity of mexidol in different origin brain damage in the experiment. Sovremennyie problemyi nauki i obrazovaniya. 2016;6 [in Russian]. http://www.science-education.ru/ru/article/view?id=25392.

Takhtfooladi HA, Takhtfooladi HA, Takht­fooladi MA. Effect of curcumine on lung injury induced by skeletal muscle ischemia/reperfusion in rats. Ulus Travma Acil Derg. 2019;25(1):7-11. doi: 10.5505/tjtes.2018.83616

Takhtfooladi MA, Takhtfooladi HA, Sedag­hatfar H, Shabani S. Effect of low-level laser therapy on lung injury induced by hindlimb ischemia/reperfusion in rats. Lasers Med Sei. 2015;30:1757-62. doi: 10.1007/s10103-015-1786-6

Calapai G, Squadrito F, Rizzo A, Marciano MC, Campo GM, Caputi AP. Multiple actions of the coumarine derivative cloricromene and its protective effects on ischemic brain injury. Naunyn Schmie­debergs Arch Pharmacol. 1995;351(2):209-15. doi: 10.1007/BF00169335

Calapai G, Marciano MC, Corica F, Allegra A, Parisi A, Frisina N, et al. Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol. 2000;401(3):349-56. doi: 10.1016/S0014-2999(00)00466-0

Bilgiç Mİ, Altun G, Çakıcı H, Gideroğlu K, Saka G. The protective effect of Montelukast against skeletal muscle ischemia/reperfusion injury: An experimental rat model. Turkish Journal of Trauma and Emergency Surgery. 2018;24(3):185-190. doi: 10.5505/tjtes.2017.22208

Demir M, Amanvermez R, Kamalı Polat A, Karabıçak I, Çınar H, Kesicioğlu T, and Polata C. The effect of silymarin on mesenteric ischemia-reper­fusion injury. Med Princ Pract. 2014;23(2):140-4. doi: 10.1159/000356860

Tsymbaliuk HY. Dynamics of antioxidant-prooxidant system in kidney’s tissue at abdominal trauma, hypovolemic shock and ischemia-reperfusion syndrome Hospital Surgery. Journal named by L.Ya. Kovalchuk. 2018;3:63-9. [in Ukrainian]. doi: 10.11603/2414-4533.2018.3.8898

Aslan T, Turer MD, Joseph A, Hill MD. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy The American J of Card. 2010;106(3):360-368. doi: 10.1016/j.amjcard.2010.03.032

Tarasiuk VS, Matviichuk MV, Palamar IV, Koroliova ND, Poliarush VV, Podolian VM, et al. The outlooks on the temporary bleeding control methods in the combat conditions. Reports of Vinnytsia National Medical University. 2017;1(21):220-7. [in Ukrainian].

Byrne RM, Taha AG, Avgerinos E, Marone LK, Makaroun MS, Chaer RA. Contemporary outcomes of endovascular interventions for acute limb ischemia. J Vasc Surg 2014;59(4):988-995. doi: 10.1016/j.jvs.2013.10.054

Fukuda I, Chiyoya M, Taniguchi S, Fukuda W. Acute limb ischemia: contemporary approach. Gen Thorac Cardiovasc Surg. 2015; 63 (10): 540-548. doi: 10.1007/s11748-015-0574-3

Tsymbaliuk HY. Daily urine renal state under ischemic-reperfusion syndrome of limbs, abdominal injury with hypovolemic shock and their combination in the early period of traumatic disease. Achievements of Clinical and Experimental Medicine. 2018;3:163-169. doi: 10.11603/1811-2471.2018.v0.i3.9350

Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant. 2015; 5:52-67. doi: 10.5500/wjt.v5.i2.52

Published
2019-07-12
How to Cite
Volotovska, N. V., & Kashchak, T. V. (2019). ANTIOXIDANT ENZYMES ACTIVITY IN EXPERIMENTAL ISCHEMIA-REPERFUSION INJURY. International Journal of Medicine and Medical Research, 5(1), 84-90. https://doi.org/10.11603/ijmmr.2413-6077.2019.1.10308