СONCEPTUAL FRAMEWORK FOR THE APPLICATION OF SYSTEMIC BIOMEDICINE METHODOLOGY FOR THE ANALYSIS OF THE DEVELOPMENT OF CARDIOVASCULAR DISEASES

Keywords: systemic biomedicine, cardiovascular diseases, robustness of biological systems, emergence of systems, fundamental directions, conceptual aspects

Abstract

Background. An attempt was made to link the basic conceptual approaches of systems biology: networking, modular thinking, emergence, as well as biological interaction limits and robustness with clinical medicine. With the help of these conceptual approaches, the growth of robustness (biological stability) and stability in the development of cardiac diseases has been explained.

Results. Possible pathways from modular activation to clinical phenotype are analyzed. It is postulated that systemic medical and systemic-biological studies are crucial for ensuring the success of efforts in the early diagnosis and personalized treatment of patients with cardiovascular pathology. They must prioritize and lead to the achievement of specific and realistic goals for strategies to intervene in the prevention of cardiovascular diseases. It is also shown that system-medical presentations provide a deeper understanding of which risk factors require the most attention, which drug-based approaches will be most effective and feasible in the context of limited time and cost resources.

Conclusions. Finally, it is concluded that the development of agreed key indicators is an important next step in system research. Alignment of key indicators will ensure effective monitoring of the course of coronary heart disease and an assessment of the dynamics of risk factors.

References

Mintser O. P., Zaliskyi V. M. (2018). Kardiolohichni aspekty merezhevoi medytsyny [Cardiologic aspects of network medicine]. Medichna mformatika ta mzheneriya (Medical Informatics & Engineering), 3, 17-27. [In Ukrainian].

Zalesskiy V. N., Movchan B. A. (2012). Personalizirovannaya meditsina: perspektivyi ispolzovaniya nano biotehnologiy [Personalized medicine: prospects for the use of nano biotechnology]. Ukrainskiy meditsinskiy chasopis (Ukrainian Medical Chronicle), 1(87), 38-42. [In Russian]. 3. Mintser O. P., Babintseva L. Yu., Kharchenko N. V. (2018). Shchodo paradyhmy poiednannia systemno-biolohichnykh i systemno-medychnykh uiavlen dlia formuvannia novoho pohliadu na diahnostyku ta likuvannia ishemichnoi khvoroby sertsia [About the paradigm of combining system-biological and systemic-medical representations for forming a new look at diagnostics and treatment of ischemic heart disease]. Medichna mformatika ta mzheneriya (Medical Informatics & Engineering), 1, 5-12. [In Ukrainian].

Zalesskiy V. N., Dyinnik O. B. (2007). Koronarnaya tomograficheskaya diagnostika: novyie metodyi vizualizatsii v klinike [Coronary tomographic diagnosis: new imaging techniques in the clinic]. Kyiv: VIPOL, (312). [In Russian].

Zalesskiy V. N., Gavrilenko T. P. (2008). Autoimmunnyie i immunovospalitelnyie protsessyi pri ateroskleroze, ego nutrientyi profilaktika i terapiya: monografiya [Autoimmunnyie i immunovospalitelnyie protsessyi pri ateroskleroze, ego nutrientyi profilaktika i terapiya: monografiya]. Kyiv: VIPOL, (591). [In Russian].

Abbott R. (2006). Emergence explained: abstractions: getting epiphenomena to the real work. Complexity, 12, 13-26.

Ahn A.C., Tewari M., Poon C.S., et al (2006). The limits of reductionism in medicine. PLoS Med, 3, e208.

Ahn A.C., Tewari M., Poon C.S., et al (2006). The clinical applications of a systems approach. PLoS Med, 3, e209.

Alon U. (2007). An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapment and Hall. Boca Raton, USA.

Assimes T.L., Roberts R. (2016). Genetics: implications for prevention and management of coronary artery disease. J. Am.Coll.Cendiol, 68(25), 2797-2818.

Azeloglu E.U. (2015). Signaling network // Cold Spring Harbor Perspect. Biol., 7(4), 005934.

Barabasi A.L., Oltvai Z.N. (2004). Network biology: understanding the cell's functional organization. Nat. Rev. Genet., 5, 101-113.

Barabasi A.L., Gulbance N., Loscalzo J. (2011). Network medicine: a network based approach to human diseases. Nat. Rev. Genet., 12, 56-68.

Bhalla U.S., Iyengar R. (1999). Emergent properties of network of biological signaling pathways. Science, 283, 381-387.

Bjorkeyren J.L.M., Kovacic J.C., Dudley J.T., et al (2015). Genome wide significant loci: how important are they? J. Am. Coll. Cardiol., 65, 830-845.

Bielekova B., Vodovotz Y., Hallenbeck J. (2014). How implementation of systems biology info clinical trials accelerates understanding of diseases. Front. Nenrol., 5, 102.

Boudoulas K.D., Leier C.V., Geleris P. et al (2015). The shortcomings of clinical practice guidelines. Cardiology, 130, 187-200.

Capra F., Luisi P.L. (Eds.) (2014). The System View of Life, a Unifying Vision. Cambridge University Press, UK.

Eungdamrong N.S. (2004). Modeling and signaling network. Biol. Cell., 96(5), 355-362.

Frueh J., Maimari H., Lui Y., et al (2012). Systems and synthetic biology of the vessel wall. FEBS Lett., 586, 2164-2170.

Green S. (2014). Systems Biology and the Quest for General Principles, a Philosophical Analysis of Methodological Strategies in systems biology. Ph.D. Dissertation. Aarhus University, Denmark.

Green S., Jones N. (2016). Constraint based reasoning for search and explanation: strategies for understanding variations and patterns in biology. Dialectical, 70, 343374.

Greenhaff P.L., Hargreaves M. (2011). System biology in human exercise physiology: is it something different from integrative physiology. J. Physiol., 589(P+5), 1031-1036.

Hooker C. (2013). On the import of constraints in complex dynamical systems. Found. Sci., 18, 757-780.

Johuson K.W., Shammer K., Glicksberd B.S. et al (2017). Enabling precision cardiology thorny milt scale biology and system medicine. JACC Basic Transl. Sci., 2(3), 311-327.

Joyner M.J., Pedersen B.K. (2011). Ten questions about systems biology. J. Physiol., 589. (P+5), 1017-1030.

Joyner M.J. (2015). Has neo - Darwinism failed clinical medicine: does system biology have to? Prog. Biophys. Mol. Biol., 117, 107-112.

Khera A.V., Emdin C.A., Drake I. et al (2016). Genetic risk adherence to a healthy lifestyle, and coronary disease. N.Engl. J.Med., 375, 2349-2358.

Kitano H. (2004). Biological robustness. Nat. Rev. Genet., 5, 826-837.

Krohs U., Callebant W. (2007). Data without models merging with without data. In Book: Boogerd F.C., Bruggeman F.J., Hofmeyr J.H.S., Westerhoff H.U. (Eds.) Systems Biology : Philosophical Foundation. Amsterdam: Elsevier.

Kuster D.M., Merkus D., van der Velden J., et al (2011). Integrative physiology 2.0.: integration of systems biology into physiology and its application to cardiovascular homeostasis. J. Physiol., 589(P+5), 1037-1045.

Lam M.P.Y., Ping P., Murphy E. (2016). Proteomics research in careliovasenlan medicine and biomarker discovery. J. Amer. Cardiol., 68, 2819-2830.

Li X., Yang Z., Wang Z., et al (2014). Shear stress in atherosclerotic plague determination. DNA Cell Biol., 33, 830-838.

Louridas G.E., Lourida K.G. (2012). A conceptual paradigm of heart failure and systems biology approach. Int. J. Cardiol., 159, 5-13.

Louridas G.E., Louridas A.G. (2012). Impact of chaos in the progression of heart failure. J. Appl. Sci., 2, 24-30.

Louridas G.E., Lourida K.G. (2014). Heart failure: a complex clinical process interrupted by systems biology approach and network medical. Anadolu Kardiyol. Derg., 14, 178-185.

Louridas G.E., Lourida K.G. (2015). System biology and clinical phenotypes of heart failure syndrome. J. Am. Coll. Cardiol., 65, 1269-1270.

Louridas G.E., Lourida K.G. (2015). Progressive nature of beart failure and systems biology. Int. Cardiovasc. Forum., 3, 27.

Louridas G.E., Lourida K.G. (2016). Heart failure in patients with preserved ejection fraction: questions concerning clinical progression. J. Cardiovascular Dev. Dis., 3, 27.

Louridas G.E., Lourida K.G. (2017). Conceptual foundations of system biology explaining complex cardiac diseases. Healthcare (Basel), 5(1), 10.

Louridas G.E., Lourida K.G. (2017). The complex cardiac atherosclerotic disorder: the elusive role of genetics and the new consensus of systems biology approach. J.Adv. Ther. Med. Innov. Sci., 2, 10-17.

Mann D.L., Bristow M.R. (2005). Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation, 111, 2837-2849.

Maron B.A., Legrold J.A. (2016). Systems biology: an emerging strategy for discovering novel pathogen etic mechanisms that promote cardiovascular disease. Glob. Curdiol. Sci. Proct., 3, e201627.

Noble D. (2012). A theory of biological relativity: no privileged level of causation. Interface Focus, 2, 55-64.

Nahrendart M., Frantz S., Swirski F.K., et al (2015). Imaging systemic in inflammatory networks in ischemic heart disease. J. Am. Coll. Cardiol., 65, 1583-1591.

Saks V., Moude C., Guzun R. (2009). Philosophical basis and some historical aspects of systems biology. Int. J. Mol. Sci., 10, 1161-1192.

Sautovito D. Egea V.,Weber C. (2015). DNA mutilation and epigenetics: exploring the terra incognita of the atherosclerotic landscape. Eur. Heart J., 36(16), 956-958.

Shinbane J.S., Saxon L.A. (2016). Digital monitoring and care: virtual medical. Trends Cardiovascular. Med., 26(8), 722-730.

Song H.K., Hong S.E., Kim T., et al (2012). Deep RNA Sequencing reveals novel cardiac transcriptome signature for physiological and pathological hypertrophy. PLoS ONE, 7, e35552.

Ussher J.R., Elmariah S., Gerechen R.E., et al (2016). The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J. Am. Coll. Cardiol., 68, 2850-2870.

Van der Greet J., Haukemeier T., Mc Burney R.N. (2006). Metabolomics based systems biology and personalized medicine. Pharmacogenomics, 7, 1087-1094.

Van Gelder J.C., Hobbert A.H., Marcus E.G., et al (2016). Tailored treatment strategies: a new approach for modern management of atrial fibrillation. J. of Intern. Med., 2016(5), 457-466.

Wagner G.P., Pavliee V. M., Cheverud J.M. (2007). The road to modulatory. Nat. Rev. Genet., 8, 921-931.

Wang J., Li Z., Chen J., et al (2013). Metabolomics identification of diagnostic place biomarkers in human with chronic heart failure. Mol. Biosyst., 9, 2618-2626.

Wolkenhauer O. (2014). Why model? Front Physiol., 5, 21.

Published
2019-02-19
How to Cite
Mintser, O. P., & Zaliskyi, V. M. (2019). СONCEPTUAL FRAMEWORK FOR THE APPLICATION OF SYSTEMIC BIOMEDICINE METHODOLOGY FOR THE ANALYSIS OF THE DEVELOPMENT OF CARDIOVASCULAR DISEASES. Medical Informatics and Engineering, (4), 29-40. https://doi.org/10.11603/mie.1996-1960.2018.4.9842
Section
Articles