SYSTEMIC BIOMEDICINE AS THE BASIS OF PERSONALIZED AND PRECISION MEDICINE

Authors

DOI:

https://doi.org/10.11603/mie.1996-1960.2023.1-2.13963

Keywords:

systemic approach, personalized medicine, precision medicine, theranostics, respiratory pro-teomics, ontology of knowledge, identification of the correctness of diagnostic decisions

Abstract

Background. The issue of determining the role of systemic biomedicine in achieving the goal of personalized medicine is considered. It was found that in various studies the concept of personalized medicine has names: precision, targeted, individualized and personalized medicine. In our study, the listed concepts are considered as synonyms.

Materials and methods. A theoretical analysis and generalization of information about the role of systemic biomedicine in achieving the goal of personalized medicine was carried out. The research results are systematized according to databases of scientific periodicals: PubMed, Web of Science, Scopus, ScienceDirect, etc. Classical methods of information search and processing were used at various stages of the research.

Results. It is noted that the use of principles and methods of systemic biomedicine provides new opportunities in the study of chronic multifactorial human diseases. Modern developments in the field of machine learning (with an emphasis on deep learning) may allow in the future to perform the process of personalized diagnosis of early metabolic disorders in the clinic.

Conclusions. It is necessary to solve the issues of identifying the choice of a solution in personalized medicine, classifying the risks of a similar strategy, mathematical methods of comparing possible approaches.

References

Pingitore, A., Iacono, A. M. (2023). The patient as a person. An integrated and systemic approach to patient and disease. Switzerland : Springer Cham. ISBN 978-3-031-23852-9. DOI: https://doi.org/10.1007/978-3-031-23852-9

Beneduce, C., Bertolaso, M. (2022). Personalized medicine in the making. Philosophical perspectives from biology to healthcare. Switzerland : Springer Cham. ISBN 978-3-030-74804-3. DOI: https://doi.org/10.1007/978-3-030-74804-3

Mardinoglu, A., Agren, R., Kampf, C. et al. (2013). Integration of clinical data with a genome-scale metabolic models of the human adipocytes. Mol. Syst. Biol., 9, 649. DOI: https://doi.org/10.1038/msb.2013.5

Stratified, personalized or P4 medicine: a new direction for placing the patient at the center of healthcare and health education (Technical report). Summary of a joint Forum, 12 May 2015, Southampton. London : Academy of Medical Sciences. Available from: https://acmedsci.ac.uk/viewFile/564091e072d41.pdf.

Many names for one concept or many concepts in one name? (2015). PHG Foundation (Blog). Available from: https://www.phgfoundation.org/publications.

Biomedicine - 2040. Horizons of science through the eyes of historians / sub. ed. V. M. Kniaginina, M. S. Lypetska. [Biomedytsyna - 2040. Horyzonty nauky ochyma istorykiv / pid. red. V. M. Knyahinina, M. S. Lypets'koyi]. St. Petersburg : North-West Strategic Development Center. [St.-Pb. : Tsentr stratehichnykh rozrobok Pivnichno-Zakhid]. [In Russian].

Babintseva, L. Yu., Krasnov, V. V. (2021). New directions of biomedical informatics in the strategy of change of practical medicine and biomedical education. precision medicine and bioinformatics of the inflammatory. [Novi napryamy biomedychnoyi informatyky v stratehiyi zminennya praktychnoyi medytsyny ta biomedychnoyi osvity. Pretsyziyna medytsyna ta bioinformatyka zbudnyka zapalennya]. Medical informatics and engineering (Medychna informatyka ta inzheneriia), 1, 31-35. doi: https://doi.org/10.11603/mie.1996-1960.2021.1.12188. [In Ukrainian]. DOI: https://doi.org/10.11603/mie.1996-1960.2021.1.12188

Agren, R., Mardinoglu, A., Asplund, A. et al. (2014). Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modally. Mol. Syst. Biol., 10, 721. DOI: https://doi.org/10.1002/msb.145122

Xie, J., Lee, S., Chen, X., Donev, R. (2010). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 62 (11), 1064-1079. doi:10.1016/j.addr.2010.07.009.10. Angermueller, C., Parnamqa, T., Parts, L. et al. (2016). Deep learning for computational biology. Mol. Syst. Biol., 12, 878. DOI: https://doi.org/10.1016/j.addr.2010.07.009

Pandey, S., Giovenzana, G. B., Szikra, D., Baranyai, Z. (2021). Positron Emission Tomography (PET) Driven Theranostics. In book: Metal Ions in Bio-Imaging Techniques. Berlin/Munich/Boston : Walter de Gruyter GmbH. doi:10.1515/ 9783110685701-017. DOI: https://doi.org/10.1515/9783110685701-017

Priyadharshini, V. S., Teran, L. M. (2016). Personalized Medicine in Respiratory Disease: Role of Proteomics. Advances in Protein Chemistry and Structural Biology, 102, 115-146. doi:10.1016/ bs.apcsb.2015.11.008.

Lazzari, C., Spreafico, A., Bachi, A. et al. (2012). Changes in plasma mass-spectral profile in course of treatment of non-small cell lung cancer patients with epidermal growth factor receptor tyrosine kinase inhibitors. Journal of Thoracic Oncology, 7 (1), 40-48. doi:10.1097/JTO.0b013e3182307f17. DOI: https://doi.org/10.1097/JTO.0b013e3182307f17

Char, D. S., Shah, N. H., Magnus, D. et al. (2018). Implementing Machine Learning in Health Care - Addressing Ethical Challenges. The New England Journal of Medicine, 378 (11), 981-983. doi:10.1056/NEJMp1714229. DOI: https://doi.org/10.1056/NEJMp1714229

Priyadharshini, V. S., Teran, L. M. (2016). Personalized Medicine in Respiratory Disease: Role of Proteomics. Advances in Protein Chemistry and Structural Biology, 102, 115-146. ISBN 978-0-12804795-8. DOI: https://doi.org/10.1016/bs.apcsb.2015.11.008

Mardinoglu, A., Argen, R., Kampf, C. et al. (2014). Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun., 5, 3083. DOI: https://doi.org/10.1038/ncomms4083

Carney, W. P. (2005). HER2/neu Status is an Important Biomarker in Guiding Personalized HER2/ neu Therapy. Per. Med., 2 (4), 317-324. DOI: https://doi.org/10.2217/17410541.2.4.317

O'Brien, E. J., Monk, J. M., Palsson, B. O. (2015). Using genome-scale models to predict biological capabilities. Cell, 161, 971-987. DOI: https://doi.org/10.1016/j.cell.2015.05.019

Pssou, B., Zengler, K. (2010). The challenges of integrating multiomic data sets. Nat. Chem. Biol., 6, 787-789. DOI: https://doi.org/10.1038/nchembio.462

Patil, K. R., Nielsen, J. (2005). Uncovering transcriptional regulation of metabolism by metabolic network topology. Proc. Natl. Acad. Sci. USA, 102, 2685-2689. DOI: https://doi.org/10.1073/pnas.0406811102

Rhee, E. P., Ho, J. E., Chen et al. (2013). A genome - wide association study of the humanmetabolome in a community - based cohort. Cell Metab., 18, 130-143. DOI: https://doi.org/10.1016/j.cmet.2013.06.013

Shlomi, T., Benyamini, T., Gottlieb, E. et al. (2011). Genome-scale metabolic modality elucidates the role of proliferative adaptations in causing the Warburg effect. PLoS Comput. Biol., 7, e1002018. DOI: https://doi.org/10.1371/journal.pcbi.1002018

Mintser, O. P., Zaliskyi, V. M. (2020). Systemic biomedicine (in two volumes). Vol. 1. Conceptualization (Chapter III co-authored with L. Yu. Babintseva, M. A. Popova). [Systemna biomedytsyna (u dvokh tomakh). T. 1. Kontseptualizatsiya (rozdil III u spivavt. z L. Yu. Babintseva, M. A. Popova)]. K. : NVP "Interservice". [In Ukrainian].

Mintser, O. P. (2018). System-biological and system-medical ideas about the functioning of orgasm. Part 1. Arrangement and structuring of medical information. [Systemno-biolohichni ta systemno-medychni uyavlennya pro funktsionuvannya orhaznimu. Chastyna 1. Uporyadkuvannya ta strukturuvannya medychnoyi informatsiyi]. Medical informatics and engineering (Medychna informatyka ta inzheneriia), 2, 5-12. doi: https://doi.org/10.11603/ mie.1996-1960.2018.2.9287. [In Ukrainian].

Varemo, L., Sheele, C., Broholm, C. et al. (2015). Proteome- and transcriptome - driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell. Rep., 11, 921-933. DOI: https://doi.org/10.1016/j.celrep.2015.04.010

Wishart, D. S., Jewison, T., Guo, A. C. et al. (2013). HMDB 3.0 - The Human Metabolome Database in 2013. Nucleic Acids Res., 41 (Database issue), D801-D807. DOI: https://doi.org/10.1093/nar/gks1065

Yizhak, K., Chaneton, B., Gottlieb, E. et al. (2015). Modeling cancer metabolism on a genome scale. Mol. Syst. Biol., 11, 817. DOI: https://doi.org/10.15252/msb.20145307

Gorski, S., Misteli, T. (2015). Systems biology in the cell nucleus. Journal of Cell Science, 118, 4083-4092. DOI: https://doi.org/10.1242/jcs.02596

Published

2023-10-09

How to Cite

Mintser, O. P., Babintseva, L. Y., Mokhnachov, S. I., & Sukhanova, O. O. (2023). SYSTEMIC BIOMEDICINE AS THE BASIS OF PERSONALIZED AND PRECISION MEDICINE. Medical Informatics and Engineering, (1-2). https://doi.org/10.11603/mie.1996-1960.2023.1-2.13963

Issue

Section

Articles