systemic approach, personalized medicine, precision medicine, theranostics, respiratory pro-teomics, ontology of knowledge, identification of the correctness of diagnostic decisions


Background. The issue of determining the role of systemic biomedicine in achieving the goal of personalized medicine is considered. It was found that in various studies the concept of personalized medicine has names: precision, targeted, individualized and personalized medicine. In our study, the listed concepts are considered as synonyms.

Materials and methods. A theoretical analysis and generalization of information about the role of systemic biomedicine in achieving the goal of personalized medicine was carried out. The research results are systematized according to databases of scientific periodicals: PubMed, Web of Science, Scopus, ScienceDirect, etc. Classical methods of information search and processing were used at various stages of the research.

Results. It is noted that the use of principles and methods of systemic biomedicine provides new opportunities in the study of chronic multifactorial human diseases. Modern developments in the field of machine learning (with an emphasis on deep learning) may allow in the future to perform the process of personalized diagnosis of early metabolic disorders in the clinic.

Conclusions. It is necessary to solve the issues of identifying the choice of a solution in personalized medicine, classifying the risks of a similar strategy, mathematical methods of comparing possible approaches.


Pingitore, A., Iacono, A. M. (2023). The patient as a person. An integrated and systemic approach to patient and disease. Switzerland : Springer Cham. ISBN 978-3-031-23852-9.

Beneduce, C., Bertolaso, M. (2022). Personalized medicine in the making. Philosophical perspectives from biology to healthcare. Switzerland : Springer Cham. ISBN 978-3-030-74804-3.

Mardinoglu, A., Agren, R., Kampf, C. et al. (2013). Integration of clinical data with a genome-scale metabolic models of the human adipocytes. Mol. Syst. Biol., 9, 649.

Stratified, personalized or P4 medicine: a new direction for placing the patient at the center of healthcare and health education (Technical report). Summary of a joint Forum, 12 May 2015, Southampton. London : Academy of Medical Sciences. Available from:

Many names for one concept or many concepts in one name? (2015). PHG Foundation (Blog). Available from:

Biomedicine - 2040. Horizons of science through the eyes of historians / sub. ed. V. M. Kniaginina, M. S. Lypetska. [Biomedytsyna - 2040. Horyzonty nauky ochyma istorykiv / pid. red. V. M. Knyahinina, M. S. Lypets'koyi]. St. Petersburg : North-West Strategic Development Center. [St.-Pb. : Tsentr stratehichnykh rozrobok Pivnichno-Zakhid]. [In Russian].

Babintseva, L. Yu., Krasnov, V. V. (2021). New directions of biomedical informatics in the strategy of change of practical medicine and biomedical education. precision medicine and bioinformatics of the inflammatory. [Novi napryamy biomedychnoyi informatyky v stratehiyi zminennya praktychnoyi medytsyny ta biomedychnoyi osvity. Pretsyziyna medytsyna ta bioinformatyka zbudnyka zapalennya]. Medical informatics and engineering (Medychna informatyka ta inzheneriia), 1, 31-35. doi: [In Ukrainian].

Agren, R., Mardinoglu, A., Asplund, A. et al. (2014). Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modally. Mol. Syst. Biol., 10, 721.

Xie, J., Lee, S., Chen, X., Donev, R. (2010). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 62 (11), 1064-1079. doi:10.1016/j.addr.2010.07.009.10. Angermueller, C., Parnamqa, T., Parts, L. et al. (2016). Deep learning for computational biology. Mol. Syst. Biol., 12, 878.

Pandey, S., Giovenzana, G. B., Szikra, D., Baranyai, Z. (2021). Positron Emission Tomography (PET) Driven Theranostics. In book: Metal Ions in Bio-Imaging Techniques. Berlin/Munich/Boston : Walter de Gruyter GmbH. doi:10.1515/ 9783110685701-017.

Priyadharshini, V. S., Teran, L. M. (2016). Personalized Medicine in Respiratory Disease: Role of Proteomics. Advances in Protein Chemistry and Structural Biology, 102, 115-146. doi:10.1016/ bs.apcsb.2015.11.008.

Lazzari, C., Spreafico, A., Bachi, A. et al. (2012). Changes in plasma mass-spectral profile in course of treatment of non-small cell lung cancer patients with epidermal growth factor receptor tyrosine kinase inhibitors. Journal of Thoracic Oncology, 7 (1), 40-48. doi:10.1097/JTO.0b013e3182307f17.

Char, D. S., Shah, N. H., Magnus, D. et al. (2018). Implementing Machine Learning in Health Care - Addressing Ethical Challenges. The New England Journal of Medicine, 378 (11), 981-983. doi:10.1056/NEJMp1714229.

Priyadharshini, V. S., Teran, L. M. (2016). Personalized Medicine in Respiratory Disease: Role of Proteomics. Advances in Protein Chemistry and Structural Biology, 102, 115-146. ISBN 978-0-12804795-8.

Mardinoglu, A., Argen, R., Kampf, C. et al. (2014). Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun., 5, 3083.

Carney, W. P. (2005). HER2/neu Status is an Important Biomarker in Guiding Personalized HER2/ neu Therapy. Per. Med., 2 (4), 317-324.

O'Brien, E. J., Monk, J. M., Palsson, B. O. (2015). Using genome-scale models to predict biological capabilities. Cell, 161, 971-987.

Pssou, B., Zengler, K. (2010). The challenges of integrating multiomic data sets. Nat. Chem. Biol., 6, 787-789.

Patil, K. R., Nielsen, J. (2005). Uncovering transcriptional regulation of metabolism by metabolic network topology. Proc. Natl. Acad. Sci. USA, 102, 2685-2689.

Rhee, E. P., Ho, J. E., Chen et al. (2013). A genome - wide association study of the humanmetabolome in a community - based cohort. Cell Metab., 18, 130-143.

Shlomi, T., Benyamini, T., Gottlieb, E. et al. (2011). Genome-scale metabolic modality elucidates the role of proliferative adaptations in causing the Warburg effect. PLoS Comput. Biol., 7, e1002018.

Mintser, O. P., Zaliskyi, V. M. (2020). Systemic biomedicine (in two volumes). Vol. 1. Conceptualization (Chapter III co-authored with L. Yu. Babintseva, M. A. Popova). [Systemna biomedytsyna (u dvokh tomakh). T. 1. Kontseptualizatsiya (rozdil III u spivavt. z L. Yu. Babintseva, M. A. Popova)]. K. : NVP "Interservice". [In Ukrainian].

Mintser, O. P. (2018). System-biological and system-medical ideas about the functioning of orgasm. Part 1. Arrangement and structuring of medical information. [Systemno-biolohichni ta systemno-medychni uyavlennya pro funktsionuvannya orhaznimu. Chastyna 1. Uporyadkuvannya ta strukturuvannya medychnoyi informatsiyi]. Medical informatics and engineering (Medychna informatyka ta inzheneriia), 2, 5-12. doi: mie.1996-1960.2018.2.9287. [In Ukrainian].

Varemo, L., Sheele, C., Broholm, C. et al. (2015). Proteome- and transcriptome - driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell. Rep., 11, 921-933.

Wishart, D. S., Jewison, T., Guo, A. C. et al. (2013). HMDB 3.0 - The Human Metabolome Database in 2013. Nucleic Acids Res., 41 (Database issue), D801-D807.

Yizhak, K., Chaneton, B., Gottlieb, E. et al. (2015). Modeling cancer metabolism on a genome scale. Mol. Syst. Biol., 11, 817.

Gorski, S., Misteli, T. (2015). Systems biology in the cell nucleus. Journal of Cell Science, 118, 4083-4092.



How to Cite

Mintser, O. P., Babintseva, L. Y., Mokhnachov, S. I., & Sukhanova, O. O. (2023). SYSTEMIC BIOMEDICINE AS THE BASIS OF PERSONALIZED AND PRECISION MEDICINE. Medical Informatics and Engineering, (1-2).