LEARNING PROCESSES IN ARTIFICIAL INTELLIGENCE TECHNOLOGIES

Authors

DOI:

https://doi.org/10.11603/mie.1996-1960.2024.1-2.14993

Keywords:

learning processes in artificial intelligence technologies, conceptualization, supervised machine learning, semi-supervised learning, classification algorithms, self-supervised machine learning, reinforcement learning

Abstract

Background. Existing models of learning theory are discussed and a new transdisciplinary model is proposed for modeling the role of artificial intelligence (AI) in improving learning processes and decision-making procedures. The purpose of the study is to conceptualize the fundamental ideas for the model, which can become the basis for the development of artificial intelligence applications to support learning processes at various levels of knowledge transfer.
Materials and methods. Theoretical analysis, generalization and systematization of research re- sults were carried out using the leading scientometric databases PubMed, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, Web of Science and Scopus. Methods of content analysis and knowledge engineering were also applied.
Results. Random use of the teaching method cannot ensure high results of knowledge transfer — a well-founded selective strategy of knowledge transfer is extremely important. Machine learning algorithms are divided into six broad categories: supervised learning, semi-supervised learning, un- supervised learning, self-supervised learning, and reinforcement learning, multi-instance learning. An important challenge in new learning processes is solving moral and ethical problems.

Conclusions. The development of high-quality and reliable simulation environments for practicing knowledge transfer algorithms in health care can facilitate the development and validation of training methods beyond the limitations of retrospective studies. The application of methods tested in such simulation environments in real clinical conditions with simultaneous supervision by clinicians will allow solving the problems of algorithm selection.

References

Gibson, D., Kovanovic, V., Ifenthaler, D., Dexter, S., Feng, S. (2023). Learning theories for artificial intelligence promoting learning processes. British Journal of Educational Technology, 54(5), 1125–1146. DOI: 10.1111/bjet.13341. DOI: https://doi.org/10.1111/bjet.13341

Cheung, B., Terekhov, A., Chen, Y., Agrawal, P., Olshausen, B. (2019). Superposition of many models into one. Advances in Neural Information Processing Systems, 10867–10876. DOI: 10.48550/ arXiv.1902.05522.

Cooper, P. A. (1993). Paradigm shifts in designed instruction: From behaviorism to cognitivism to constructivism. Educational Technology, 33(5), 12–19.

Dawson, S., Poquet, O., Colvin, C., Rogers, T., Pardo, A., Gasevic, D. (2018, March). Rethinking learning analytics adoption through complexity leadership theory. LAK'18: Proceedings of the 8th International Conference on Learning Analytics and Knowledge, (p. 236–244). Sydney, New South Wales, Australia. DOI: 10.1145/3170358.3170375. DOI: https://doi.org/10.1145/3170358.3170375

Dieterle, E., Dede, C., Walker, M. (2022). The cyclical ethical effects of using artificial intelligence in education. AI & Society, 39(2), 633– 643. DOI: 10.1007/s00146-022-01497-w. DOI: https://doi.org/10.1007/s00146-022-01497-w

Wang, S., Wang, F., Zhu, Z., Wang, J., Tran, T., Du, Z. (2024). Artificial intelligence in education: A systematic literature review. Expert Systems with Applications, 252 (PA), 124167. DOI: 10.1016/j. eswa.2024.124167. DOI: https://doi.org/10.1016/j.eswa.2024.124167

Ertmer, P. A., Newby, T. J. (1993). Behaviorism, cognitivism, constructivism: Comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 6(4), 50–72. DOI: 10.1111/j.1937-8327.1993.tb00605.x. DOI: https://doi.org/10.1111/j.1937-8327.1993.tb00605.x

Song, F., Guo, Z., Mei, D. (2010, November). Feature selection using principal component analysis. Proceedings of the 2010 International Conference on System Science: Engineering Design and Manufacturing Informatization, (p. 27–30). Yichang, China. DOI: 10.1109/ICSEM.2010.14. DOI: https://doi.org/10.1109/ICSEM.2010.14

Gasevic, D., Joksimovic, S., Eagan, B. R., Shaffer, D. W. (2019). SENS: Network analytics to combine social and cognitive perspectives of collaborative learning. Computers in Human Behavior, 92, 562–577. DOI: 10.1016/j.chb.2018.07.003. DOI: https://doi.org/10.1016/j.chb.2018.07.003

Gasevic, D., Jovanovic, J., Pardo, A., Dawson, S. (2017). Detecting learning strategies with analytics: Links with self-reported measures and academic performance. Journal of Learning Analytics, 4(2), 113–128. DOI: 10.18608/jla.2017.42.10. DOI: https://doi.org/10.18608/jla.2017.42.10

Wen, J., Fang, X., Cui, J., Fei, L., Yan, K., Chen, Y., Xu, Y. (2018). Robust sparse linear discriminant analysis. IEEE Transactions on Circuits and Systems for Video Technology, 29(2), 390–403. DOI: 10.1109/ TCSVT.2018.2799214.

Khezeli, K., Siegel, S., Shickel, B., Ozrazgat- Baslanti, T., Bihorac, A., Rashidi, P. (2023). Reinforcement Learning for Clinical Applications. Clinical Journal of the American Society of Nephrology, 18(4), 521–523. DOI: 10.2215/ CJN.0000000000000084. DOI: https://doi.org/10.2215/CJN.0000000000000084

Yu, C., Liu, J., Nemati, S., Yin, G. (2021). Reinforcement learning in healthcare: a survey. ACM Computing Surveys, 55(1), 1–36. DOI: 10.1145/3477600. DOI: https://doi.org/10.1145/3477600

Coronato, A., Naeem, M., De Pietro, G., Paragliola, G. (2020). Reinforcement learning for intelligent healthcare applications: a survey. Artificial Intelligence in Medicine, 109, 101964. DOI: 10.1016/j. artmed.2020.101964. DOI: https://doi.org/10.1016/j.artmed.2020.101964

Datta, S., Li, Y., Ruppert, M. M., Ren, Y., Shickel, B., Ozrazgat-Baslanti, T., Rashidi, P., Bihorac, A. (2021). Reinforcement learning in surgery. Surgery, 170(1), 329–332. DOI: 10.1016/j.surg.2020.11.040. DOI: https://doi.org/10.1016/j.surg.2020.11.040

Loftus, T. J., Filiberto, A. C., Li, Y., Balch, J., Cook, A. C., Tighe, P. J., Efron, P. A., Upchurch Jr., G. R., Rashidi, P., Li, X., Bihorac, A. (2020). Decision analysis and reinforcement learning in surgical decision-making. Surgery, 168(2), 253-266. DOI: 10.1016/j.surg.2020.04.049. DOI: https://doi.org/10.1016/j.surg.2020.04.049

Quellec, G., Cazuguel, G., Cochener, B., Lamard, M. (2017). Multiple-Instance Learning for Medical Image and Video Analysis. IEEE Reviews in Biomedical Engineering, 10, 213–234. DOI: 10.1109/RBME.2017.2651164. DOI: https://doi.org/10.1109/RBME.2017.2651164

Li, M. A., Luo, X. Y., Yang, J. F. (2016). Extracting the nonlinear features of motor imagery EEG using parametric t-SNE. Neurocomputing, 218, 371–381. DOI: 10.1016/j.neucom.2016.08.083. DOI: https://doi.org/10.1016/j.neucom.2016.08.083

Luo, X., Li, X., Wang, Z., Liang, J. (2019). Discriminant autoencoder for feature extraction in fault diagnosis. Chemometrics and Intelligent Laboratory Systems, 192, 103814. DOI: 10.1016/j. chemolab.2019.103814. DOI: https://doi.org/10.1016/j.chemolab.2019.103814

Lockyer, L., Dawson, S. (2011, February 27 – March 01). Learning designs and learning analytics. LAK'11: Proceedings of the 1st International Conference on Learning Analytics and Knowledge, (p. 153–156). Canada. DOI: 10.1145/2090116.2090140. DOI: https://doi.org/10.1145/2090116.2090140

Selwyn, N. (2022). The future of AI and education: Some cautionary notes. European Journal of Education, 57(4), 620–631. DOI: 10.1111/ EJED.12532. DOI: https://doi.org/10.1111/ejed.12532

Zhou, Y., Muresanu, A., Han, Z., Paster, K., Pitis, S., Chan, H., Ba, J. (2022). Large language models are human-level prompt engineers. URL: https://arxiv.org/abs/2211.01910. DOI: 10.48550/arXiv.2211.01910.

Wen, J., Fang, X., Cui, J., Fei, L., Yan, K., Chen, Y., Xu, Y. (2018). Robust sparse linear discriminant analysis. IEEE Transactions on Circuits and Systems for Video Technology, 29(2), 390–403. DOI: 10.1109/TCSVT.2018.2799214. DOI: https://doi.org/10.1109/TCSVT.2018.2799214

Published

2025-02-12

How to Cite

Mintser, O. (2025). LEARNING PROCESSES IN ARTIFICIAL INTELLIGENCE TECHNOLOGIES. Medical Informatics and Engineering, (1-2), 4–13. https://doi.org/10.11603/mie.1996-1960.2024.1-2.14993

Issue

Section

Articles