DIGITAL DATA MANAGEMENT IN PATHOLOGY
DOI:
https://doi.org/10.11603/mie.1996-1960.2023.1-2.13960Keywords:
biomedical informatics, digital pathology, data management, image analysis, Big Date, biomedical visualizationAbstract
Background. Digitalization processes are actively taking place in all spheres of human activity, associated with the saturation of the physical world with electronic and digital devices, means, systems and the establishment of electronic and communication interaction between them with the help of digital technologies. One of the information environments based on digital images of drugs is digital pathology. An overview of digital data management trends in modern pathology was made. The purpose of the study: to provide insight and summarize information about digital data management in pathology.
Materials and methods. With the help of databases: Medline, Embase, PubMed, Web of Science, Cochrane Library, Cinahl etc., a theoretical analysis and generalization of information about modern digital data management in pathology, prospects for future research were carried out.
Results. Large amounts of pathology data generated in clinical practice and in the course of scientific research make the task of improving the quality of their management urgent. Modern digital data management in pathology represents a technology aimed at providing personalized and targeted healthcare now and in the near future. Advances in medical information technologies are turning large volumes of multidimensional pathology data into useful information to drive the development and implementation of new approaches to diagnosis, treatment, and prevention of complex diseases.
Conclusions. Trends in digital data management in pathology are related to the development of digitalization software and hardware, in particular image analysis tools, emulation of diagnostic procedures, management of large volumes of high-resolution images, as well as the implementation artificial intelligence.
References
Karnovsky, M. J. (2006). A pathologist's odyssey. Annu Rev Pathol., 1, 1-22. DOI: https://doi.org/10.1146/annurev.pathol.1.110304.100140
Williams, B. J., DaCosta, P., Goacher, E., Treanor, D. (2017). A Systematic Analysis of Discordant Diagnoses in Digital Pathology Compared with Light Microscopy. Archives of Pathology & Laboratory Medicine, 141, 12, 1712-1718. DOI: https://doi.org/10.5858/arpa.2016-0494-OA
Comaniciu, D., Meer, P. (2002). Advanced Algorithmic Approaches to Medical Image Segmentation. In: State of The Art Applications inCardiology, Neurology, Mammography and Pathology. New York : Springer-Verlag, 541-558. DOI: https://doi.org/10.1007/978-0-85729-333-6_10
Cooper, L. A., Kong, J., Gutman, D. A., Wang, F. et al. (2010). An integrative approach for in silico glioma research. IEEE Trans Biomed Eng., 57 (10), 2617-2621. DOI: https://doi.org/10.1109/TBME.2010.2060338
Ahlers, H. J., Stratman, C. et al. (2014). Can digital pathology result in cost savings? A financial projection for digital pathology implementation ofa large integrated health care organization. J Pathol Inform., 5, 33. DOI: https://doi.org/10.4103/2153-3539.139714
CAP - Transforming Pathologists (2011). Available from: http://www.cap.org/apps/docs/membership/transformation/new/index.html.
Charite Universitatsmedizin Berlin. European Scanner Contest (2011). Available from: http://scanner-contest.charite.de.
Campanella, G. et al. (2019). Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature medicine, 25 (8), 1301-1309. DOI: https://doi.org/10.1038/s41591-019-0508-1
Madabhushi, A., Agner, S., Basavanhally, A., Doyle, S., Lee, G. (2011). Computer-aided prognosis: Predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data. Comput Med Imaging Graphics, 35 (7-8), 506-514. DOI: https://doi.org/10.1016/j.compmedimag.2011.01.008
Gurcan, M. N., Kong, J., Sertel, O. et al. (2007). Computerized pathological image analysis for neuroblastoma prognosis. Proc AMIA Annu Symp., 304-308. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655895/.
Gardner, R. M., Overhage, J. M., Steen, E. B. et al. (2009). Core content for the subspecialty of clinical informatics. J Amer Med Inf Assoc., 16 (2), 153-157. DOI: https://doi.org/10.1197/jamia.M3045
Rojo, M. G., Garcia, G. B., Mateos, C. P., Garcia, J. G., Vicente, M. C. (2006). Critical comparison of 31 commercially available digital slide systems in pathology. Int J Surg Pathol., 14 (4), 285-305. DOI: https://doi.org/10.1177/1066896906292274
Abels, E., Pantanowitz, L. (2017). Current State of the Regulatory Trajectory for Whole Slide Imaging Devices in the USA. Journal of pathology informatics, 8, 23. DOI: https://doi.org/10.4103/jpi.jpi_11_17
DICOM. Digital imaging and communications in medicine (2011). Available from: http://medical.nema.org/.
Cooper, L. A., Carter, A. B., Farris, A. B., Wang, F. (2012). Digital Pathology: Data-Intensive Frontier in Medical Imaging: Health-information sharing, specifically of digital pathology, is the subject of this paper which discusses how sharing the rich images in pathology can stretch the capabilities of all otherwise well-practiced disciplines. Proc IEEE Inst Electr Electron Eng., 100 (4), 991-1003. doi: 10.1109/ JPROC.2011.2182074. DOI: https://doi.org/10.1109/JPROC.2011.2182074
Al-Jana, B. S., Huisman, A., Van Diest, P. J. (2012). Digital pathology: current status and future perspectives. Histopathology, 61 (1), 1-9. DOI: https://doi.org/10.1111/j.1365-2559.2011.03814.x
Baidoshvili, A., Bucur, A., Van Leeuwen, J. et al. (2018). Evaluating the benefits of digital pathology implementation: time savings in laboratory logistics. Histopathology, 73 (5), 784-794. DOI: https://doi.org/10.1111/his.13691
Mintser, O. P., Babintseva, L. Yu. (2022). Existing strategies, trends and significance of data presentation forms for the generalization of scientific research, project management and grant documentation design. K.: LLC «NVP «Interservice»». ISBN 978966-999-308-3. [In Ukrainian].
Apostu, S. A., Vasile, V., Veres, C. (2021). Externalities of Lean Implementation in Medical Laboratories. Process Optimization vs. Adaptation and Flexibility for the Future. Int J Environ Res Public Health, 18 (23), 12309. DOI: https://doi.org/10.3390/ijerph182312309
Williams, B. J., Bottoms, D., Clark, D. et al. (2019). Future-proofing pathology part 2: building a business case for digital pathology. Journal of Clinical Pathology, 72 (3), 198-205. DOI: https://doi.org/10.1136/jclinpath-2017-204926
Health workforce (2019). World Health Organization. Available from: https://www.who.int/health-topics/health-workforce#tab=tab_1.
Gurcan, M. N., Boucheron, L. E., Can, A. et al. (2009). Histopathological Image Analysis: A Review. IEEE Rev Biomed Eng., 2, 147-171. DOI: https://doi.org/10.1109/RBME.2009.2034865
Foran, D. J., Yang, L., Chen, W., Hu, J. et al. (2011). ImageMiner: A software system for comparative analysis of tissue microarrays using content-based image retrieval, high-performance computing, and grid technology. J Amer Med Inf Assoc., 18 (4), 403-415. DOI: https://doi.org/10.1136/amiajnl-2011-000170
Davies, R. (2015). Industry 4.0 Digitalisation forproductivity and growth. European Parliamentary Research Service. European Union. Available from: https://www.europarl.europa.eu/RegData/etudes/BRIE/2015/568337/EPRS_BRI(2015)568337_ EN.pdf.
Henricks, W. H., Boyer, P. J., Harrison, J. H. et al. (2003). Informatics training in pathology residency programs: Proposed learning objectives and skill sets for the new millennium. Arch Pathol Lab Med., 127 (8), 1009-1018. DOI: https://doi.org/10.5858/2003-127-1009-ITIPRP
McDonald, C. J., Huff, S. M., Suico, J. G., Hill, G. et al. (2003). LOINC, a universal standard for identifying laboratory observations: A 5-year update. Clin Chem., 49 (4), 624-633. DOI: https://doi.org/10.1373/49.4.624
Bueno, G., Fernandez-Carrobles, M. M., Deniz, O., Garria-Rojo, M. (2016). New Trends of Emerging Technologies in Digital Pathology. Pathobiology, 83 (2-3), 61-69. DOI: https://doi.org/10.1159/000443482
Weinstein, R. S., Graham, A. R., Richter, L. C., Barker, G. P. et al. (2009). Overview of telepathology, virtual microscopy, and whole slide imaging: Prospects for the future. Human Pathol., 40 (8), 1057-1069. DOI: https://doi.org/10.1016/j.humpath.2009.04.006
Wang, F. (2011). Pathology Analytic Imaging Standards. Available from: https://web.cci.emory.edu/confluence/display/PAIS/.
Kim, D., Hanna, M. G., Vanderbilt, C., Sirintrapun, S. J. (2021). Pathology informatics education during the COVID-19 Pandemic at Memorial Sloan Kettering Cancer Center. Acta Med Acad., 50 (1), 136-142. DOI: https://doi.org/10.5644/ama2006-124.331
Harrison, J. H., Jr. (2004). Pathology informatics questions and answers from the University of Pittsburgh pathology residency informatics rotation. Arch Pathol Lab Med., 128 (1), 71-83. DOI: https://doi.org/10.5858/2004-128-71-PIQAAF
Gu, J., Taylor, C. R. (2014). Practicing pathology in the era of big data and personalized medicine. Appl Immunohistochem Mol Morphol., 22 (1), 1-9. DOI: https://doi.org/10.1097/PAI.0000000000000022
Gilbertson, J. R., Ho, J., Anthony, L. et al. (2006). Primary histologic diagnosis using automated whole slide imaging: A validation study. BMC Clin Pathol., 6, 4. DOI: https://doi.org/10.1186/1472-6890-6-4
Safran, C., Shabot, M. M., Munger, B. S. et al. (2009). Program requirements for fellowship education in the subspecialty of clinical informatics. J Amer Med Inf Assoc., 16 (2), 158-616. DOI: https://doi.org/10.1197/jamia.M3046
Daniel, C., Macary, F., Garria Rojo, M., Klossa, J. et al. (2011). Recent advances in standards for collaborative digital anatomic pathology. Diagn Pathol., 6 (1), S17. DOI: https://doi.org/10.1186/1746-1596-6-S1-S17
Royal College of Pathologists. Best practice recommendations for digital pathology (2018). Available from: https://www.rcpath.org/static/f465d1b3-797b-4297-b7fedc00b4d77e51/Best-practice-recommendations-for-implementing-digital-pathology.pdf.
Straus, W. (1957). Segregation of an intravenously injected protein by droplets of the cells of rat kidneys. J Biophys Biochem Cytol., 3 (6), 1037-1040. DOI: https://doi.org/10.1083/jcb.3.6.1037
Caldwell, M. L., Moffitt, R. A., Liu, J. et al. (2008). Simple quantification of multiplexed quantum dot staining in clinical tissue samples. Proc IEEE Conf Eng Med Biol Soc., 1907-1910. DOI: https://doi.org/10.1109/IEMBS.2008.4649559
Daniel, C., Rojo, M. G., Klossa, J., Della Mea, V. et al. (2011). Standardizing the use of whole slide images in digital pathology. Comput Med Imaging Graphics, 35 (7-8), 496-505. DOI: https://doi.org/10.1016/j.compmedimag.2010.12.004
Williams, S., Henricks, W. H., Becich, M. J., Toscano, M., Carter, A. B. (2010). Telepathology for patient care: What am I getting myself into? Adv Anatom Pathol., 17 (2), 130-149. DOI: https://doi.org/10.1097/PAP.0b013e3181cfb788
Goacher, E., Randell, R., Williams, B. J., Treanor, D. (2017). The Diagnostic Concordance of Whole Slide Imaging and Light Microscopy: A Systematic Review. Archives of Pathology & Laboratory Medicine, 141 (1), 151-161. DOI: https://doi.org/10.5858/arpa.2016-0025-RA
Schwab, K. (2015). The Fourth Industrial Revolution. What It Means and How to Respond. Foreign Affairs. Available from: https://www.foreignaffairs.com/world/fourth-industrial-revolution.
Goldberg, I. G., Allan, C., Burel, J. M., Creager, D. et al. (2005). The Open Microscopy Environment (OME) data model and XML file: Open tools for informatics and quantitative analysis in biological imaging. Genome Biol., 6 (5), R47. DOI: https://doi.org/10.1186/gb-2005-6-5-r47
Wilbur, D. C., Madi, K., Colvin, R. B. et al. (2009). Whole-slide imaging digital pathology as a platform for teleconsultation: A pilot study using paired subspecialist correlations. Arch Pathol Lab M-ed., 133 (12), 1949-1953. DOI: https://doi.org/10.5858/133.12.1949
Mintser, O. P., Babintseva, L. Yu. (2022). New trends in the development of data presentation and management systems. Analytical view. Medical informatics and engineering, 1-2 (57-58), 5-13. [In Ukrainian].
Downloads
Published
How to Cite
Issue
Section
License
Journal Medical Informatics and Engineering allows the author(s) to hold the copyright without registration
The majority of Medical Informatics and Engineering Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The remaining journals offer a choice of licenses.
This journal is available through Creative Commons (CC) License CC-BY 4.0