intravital microscopy, malignant neoplasms, diagnosis, treatment


Background. In vivo endoscopic optical microscopy provides a tool to assess tissue architecture and morphology similar to standard histological examination without the need for tissue removal. Real-time in vivo imaging has become an integral tool for the investigation and understanding of cellular processes in health and disease at single-cell resolution, has revolutionized visualization of tumor-microenvironment interactions in real time. At the same time, there are still many unresolved questions regarding the clear interpretation of the results obtained with the intravital microscopy, indications for the clinical application of each of the technologies, the formation of clinical protocols with the inclusion of appropriate methods for different nosology, modification of surgical instruments with the involvement of optical systems, etc.

Materials and methods. Theoretical analysis, generalization, and systematization of research results were carried out in accordance with PRISMA Group recommendations using such leading scientometric databases as PubMed, Medline, PILOTS Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, Ovid PsycINFO, Global Health Library CINAHL, and the Web of Science and Scopus, for the period from 2003 to 2023 by keywords: intravital microscopy, intravital multipho-ton microscopy, fluorescence confocal microscopy, photodynamic diagnostics, optical coherence tomography, confocal laser endomicroscopy, atomic force microscopy, computer image processing.

Results. In this article, we focus on optical imaging technologies in vivo that have the powerful potential to significantly improve the diagnosis and therapy of malignant tumors: fluorescence confocal microscopy, optical coherence tomography, light sheet microscopy, two-photon and high-resolution microscopy, atomic force microscopy, electron microscopy, etc. We investigated the technological principles, preclinical and clinical studies analyzing the sensitivity and specificity of the above methods in the diagnosis and treatment of various types of malignant neoplasms, methods of computer image processing, discussed the prospects for improving the above technologies, further prospects for the development of the latest optical devices for the diagnosis and treatment of malignant neoplasms. We also address the advantages and limitations of this high-resolution technologies.

Conclusions. Major technological advances are rapidly expanding the frontiers of intravital microscopy, which is likely to play an increasingly important role in preclinical, clinical cancer research, diagnosis and treatment of malignant neoplasms in the coming years.


Gryvkova, L. V., Zotov, О. S. Metodyky diahnostyky zloyakisnykh novoutvoren'. [Methods of diagnosis of malignant neoplasms]. - Режим доступу: [In Ukrainian].

Riesterer, J. L., Lopez, C. S., Stempinski, E. S., Williams, M. et al. (2020). A workflow for visualizing human cancer biopsies using large-format electron microscopy. Methods Cell Biol, 158, 163-181.

U, A. D., Mazumder, N. (2018). Types of advanced optical microscopy techniques for breast cancer research: a review. Lasers Med Sci., 33 (9), 1849-1858.

Perrin, L., Bayarmagnai, B., Gligorijevic, B. (2020). Frontiers in intravital multiphoton microscopy of cancer. Cancer Rep (Hoboken), 3 (1), e1192.

Kapsokalyvas, D., J van Zandvoort, M. A. M. (2020). Molecular Imaging in Oncology: Advanced Microscopy Techniques. Recent Results Cancer Res., 216, 533-561.

Bishop, K. W., Maitland, K. C., Rajadhyaksha, M. et al. (2022). In vivo microscopy as an adjunctive tool to guide detection, diagnosis, and treatment. J Biomed Opt., 27 (4), 040601.

Giampetraglia, M., Weigelin, B. (2021). Recent advances in intravital microscopy for preclinical research. Curr Opin Chem Biol., 63, 200-208.

Trumbull D. A., Lemini R., Bagaria S. P., Elli E. F., Colibaseanu D. T. et al. (2020). Intravital Microscopy (IVM) in Human Solid Tumors: Novel Protocol to Examine Tumor-Associated Vessels. JMIR Res Protoc., 9 (10), e15677.

Si P., Honkala A., de la Zerda A., Smith B. R. (2020). Optical microscopy and coherence tomography of cancer in living subjects. Trends in Cancer, 6 (3), 205-222.

Nandi T., Ainavarapu S. R. K. (2021). Applications of atomic force microscopy in modern biology. Emerg Top Life Sci., 5 (1), 103-111.

Liu Y., Xu J. (2019). High-resolution microscopy for imaging cancer pathobiology. Curr Pathobiol Rep., 7 (3), 85-96.

Glaser A., Reder N., Chen Y. et al. (2017). Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat Biomed Eng., 1 (7), 0084.

Petrov, V. V., Kryuchyn, A. A., Belyak, E. V., Lapchuk, A. S. (2016). Multi-photon microscopy and optical recording. Akademperiodika. [In Ukrainian].

Belykh E. G., Zhao X., Cavallo C., Bohl M. A. et al. (2018). Laboratory evaluation of a robotic operative microscope-visualization platform for neurosurgery. Cureus, 10 (7), e3072.

Jayadev C., Dabir S., Vinekar A., Shah U. et al. (2015). Microscope-integrated optical coherence tomography: a new surgical tool in vitreoretinal surgery. Indian Journal of Ophthalmology, 63 (5), 399.

Kamp, M. A., Slotty, P., Turowski, B., Etminan, N. et al. (2012). Microscope-integrated quantitative analysis of intraoperative indocyanine green fluorescence angiography for blood flow assessment: first experience in 30 patients. Neurosurgery, 70 (1), 65-73.

Gaustad, J. V., Simonsen, T. G., Hansem, L. M. K., Rofstad, E. K. (2021). Intravital microscopyof tumor vessel morphology and function using a standard fluorescence microscope. Eur J Nucl Med Mol Imaging, 48 (10), 3089-3100.

Umebayashi, D. et al. (2018). Augmented reality visualization-guided microscopic spine surgery: transvertebral anterior cervical foraminotomy and posterior foraminotomy. J. Am. Acad. Orthop. Surg. Glob. Res. Rev., 2 (4), e008.

Lee, J., Wijesinghe, R. E., Jeon, D., Kim, P. et al. (2018). Clinical utility of intraoperative tympanomastoidectomy assessment using a surgical microscope integrated with an optical coherence tomography. Scientific Reports, 8 (1), 1-8.

Carrasco-Zevallos, O. M., Viehland, C., Keller, B., Draelos, M. et al. (2017). Review of intraoperative optical coherence tomography: technology and applications. Biomedical Optics Express, 8 (3), 1607-1637.

Boppart, S. A., Luo, W., Marks, D. L., Singletary, K. W. (2004). Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Research and Treatment, 84 (2), 85-97.

Bouma B. E., de Boer J. F., Huang D., Jang I. K. et al. (2022). Optical coherence tomography. Nat Rev Methods Primers, 2, 79.

Wang, A., Qi, W., Gao, T., Tang, X. (2022). Molecular contrast optical coherence tomography and its applications in medicine. Int J Mol Sci., 23 (6), 3038.

Lee, C., Lee, D., Zhou, Q., Kim, J., Kim, C. (2015). Virtual intraoperative surgical photoacoustic microscopy. In European Conference on Biomedical Optics 2015, 21-25 June 2015, Munich, Germany. Proc. SPIE, 9539, 95390E.

Aguirre J., Morales-Dalmau J., Funk L., Jara F., Turon P., Durduran T. (2014). The potential of photoacoustic microscopy as a tool to characterize the in vivo degradation of surgical sutures. Biomedical Optics Express, 5 (8), 2856-2869.

Hu, S., Wang, L. V. (2010). Photoacoustic imaging and characterization of the microvasculature. J. Biomed. Opt., 15 (1), 011101.

Heeman, W., Steenbergen, W., van Dam, G. M., Boerma, E. C. (2019). Clinical applicationsof laser speckle contrast imaging: a review. Journal of Biomedical Optics., 24 (8), 080901.

Briers, D., Duncan, D. D., Hirst, E. R., Kirkpatrick, S. J. et al. (2013). Laser speckle contrast imaging: theoretical and practical limitations. Journal of Biomedical Optics, 18 (6), 066018.

Senarathna, J., Rege, A., Li, N., Thakor, N. V. (2013). Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Reviews in Biomedical Engineering, 6, 99-110.

Lapchuk, A., Pashkevich, G. A., Prygun, O. V., Yurlov, V., Borodin, Y., Kryuchyn, A. (2015). Experiment evaluation of speckle suppression efficiency of 2D quasi-spiral M-sequence-based diffractive optical element. Applied Optics, 54 (28), E47-E54.

Bogomolov, M. F., Puzyk, M. Yu. (2020). Lazernyy spekl-kontrastnyy analiz dlya doslidzhennya mikrotsyrkulyatsiyi v sudynakh. [Laser speckle-contrast analysis for the study of microcirculation in vessels]. Biomedychna inzheneriya i tekhnolohiya. [Biomedical engineering and technology], 4, 114-121.

Chen, P. H. C., Gadepalli, K., MacDonald, R. et al. (2019). An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat Med., 25, 1453-1457.

Ettinger, A., Wittmann, T. (2014). Fluorescence live cell imaging. Methods Cell Biol., 123, 77-94.

Fluorescence Microscopy & Cell Imaging. URL:

Murphy, J. Understanding cancer's genetic makeup could halt its spread. URL:

Seferbekova, Z., Lomakin, A., Yates, L. R., Gerstung, M. (2023). Spatial biology of cancer evolution. Nat Rev Genet, 24 (5), 295-313.

Lomakin, A., Svedlund, J., Strell, C. et al. (2022). Spatial genomics maps the structure, nature and evolution of cancer clones. Nature, 611, 594-602.

Lekka, M. Philos, Trans, A. (2022). Applicability of atomic force microscopy to determine cancer-related changes in cells. Math Phys Eng Sci., 380 (2232), 0346.

Binnig, G., Quate, C. F., Gerber, C. (1986). Atomic force microscope. Phys Rev Lett., 56 (9), 930-933.

Deng, X., Xiong, F., Li, X. et al. (2018). Application of atomic force microscopy in cancer research. J Nanobiotechnol., 16. URL:

Calzado-Martrn, A., Encinar, M., Tamayo, J., Calleja, M., San Paulo, A. (2016). Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy. ACS Nano, 10 (3), 3365-3374.

Alibert, C., Goud, B., Manneville, J. B. (2017). Are cancer cells really softer than normal cells? Biol Cell., 109 (5), 167-189.

Kwon, T., Gunasekaran, S., Eom, K. (2019). Atomic force microscopy-based cancer diagnosis by detecting cancer-specific biomolecules and cells. Biochim Biophys Acta Rev Cancer, 1871 (2), 367-378.

Yin, A. K., Glaser, S. Y., Leigh, Y., Chen, L. et al. (2016). Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology. Biomed. Opt. Express, 7 (2), 251-263.

Brogan, C. (2022). Researchers trial tiny new microscope to detect breast cancer. URL:

Ragazzi, M., Piana, S., Longo, C., Castagnetti, F. et al. (2014). Fluorescence confocal microscopy for pathologists. Mod Pathol., 27 (3), 460-471.

Mittal, S., Yeh, K., Leslie, L. S., Kenkel, S. et al. (2018). Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology. Proceedings of the National Academy of Sciences, 115 (25), E5651-E5660.48. Ma, L., Fei, B. (2021). Comprehensive review of surgical microscopes: technology development and medical applications. J Biomed Opt., 26 (1), 010901.

Babes, L., Yipp, B. G., Senger, D. L. (2023). Intravital microscopy of the metastatic pulmonary environment. Methods Mol Biol., 2614, 383-396.

Entenberg, D., Oktay, M. H., Condeelis, J. S. (2023). Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer, 23 (1), 25-42.

Meng, X., Chen, J., Zhang, Z., Li, K. et al. (2021). Non-invasive optical methods for melanoma diagnosis. Photodiagnosis Photodyn Ther., 34, 3102266.

Zbiral, B., Weber, A., Toca-Herrera, J. L. (2022). Measuring mechanical properties of breast cancer cells with atomic force microscopy. Methods Mol Biol., 2471, 323-343.

Liu, J. J., Droller, M. J., Liao, J. C. (2012). New optical imaging technologies for bladder cancer: considerations and perspectives. J Urol., 188 (2), 361-368.

Sato, T., Miura, T., Nozaka, H., Katayama, Y. (2007). Progression in diagnostic pathology development of virtual microscopy and its applications. Rinsho Byori, 55 (4), 344-350.

Kumar, R., Srivastava, R., Srivastava, S. (2015). Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically-interpretable features. J Med Eng., 457906. URL:



How to Cite

Kryuchуna Y. A., & Kryuchyn, A. A. (2023). ANALYSIS OF THE USE OF MODERN IN VIVO MICROSCOPY METHODS FOR THE DIAGNOSIS AND TREATMENT OF MALIGNANT NEOPLASMS. Medical Informatics and Engineering, (1-2), 24–43.