MAGNETO-ELECTROCHEMICAL THEORY OF METABOLISM AS THE LATEST PROMISING DIRECTION FOR IMPROVING VIEWS ON THE ETIOLOGY AND PATHOGENESIS OF NON-COMMUNICABLE DISEASES
DOI:
https://doi.org/10.11603/mie.1996-1960.2022.1-2.13108Abstract
Background. The further progress of medicine in solving the problem of non-infectious diseases can be realized thanks to the rethinking and globalization of modern fundamental knowledge with the creation of the latest promising scientific directions for their solution. The phenomenon of the biological life of the human body as the basis of the functional state of its health continues to remain a relevant and not fully understood fundamental aspect of modern science. A complete scientific understanding of the phenomenon of biological life can contribute to the improvement of scientific medical views on etiology and pathogenesis and principles of treatment of Non-Communicable Diseases.
The aim of the theoretical study was to summarize the existing scientific physical and biological knowledge of modern science about the electromagnetic processes of the phenomenon of life at the cellular level in order to deepen the fundamental knowledge of complex medicine. This is necessary in order to deepen the fundamental knowledge of complex/systemic medicine with the creation of the latest promising scientific directions for solving the problem of Non-Communicable Diseases.
Materials and methods. The analysis of the presented data is a fragment of research work on "Development of algorithms and technologies for implementing a Healthy Lifestyle in patients with Non-Communicable Diseases based on the study of functional status" (state registration number 0121U108237). General scientific methods and theoretical methods (method of constructing theory, logical methods, and rules of normative nature) were used in this theoretical study.
Results. The authors provide a fragment of a theoretical generalization of a number of aspects of the course of magnetoelectrochemical processes on the micro-level structures of the human body. A description of model ideas about the physical mechanisms of signaling implementation on biopolymers and in aqueous crystal systems of the human body is presented. Conceptual conclusions from the standpoint of systemic medicine were made. The primacy of magnetoelectric interaction at the molecular level is fundamental for the existence and adequate functioning of living biological systems of various levels of complexity, including the human body.
Conclusions. Disease is a phenomenon of violation of the magnetoelectric state of biomolecular structures, death is a phenomenon of complete absence of magnetoelectric phenomena, and the human body is one of the forms of magnetoelectrochemical organization of biological matter on Earth. This is the next step towards deepening the fundamental knowledge of the pathogenesis of diseases of internal organs. This can contribute to further optimization of treatment and prevention of diseases of internal organs. This is so because a clear and correct understanding of what actually happens to the biopolymers of the human body at the molecular level is necessary for a true understanding of the causes of Non-Communicable Diseases. Modern deepening of fundamental natural science to the level of the course of magnetoelectric processes at the molecular level in living biological systems from the standpoint of systemic medicine should be fully integrated into medical science with a paradigm shift from electrochemical to magnetoelectrochemical metabolism.
References
Baranovskiy, V. (2008). Kvantovaya mekhanika i kvantovaya khimiya [Quantum mechanics and quantum chemistry]: a tekstbook. Academia. [In Russian].
Bojko, V. V., Krasnogolovec, M. A., (red.). (2003). Kvantovo-biologicheskaya teoriya [Quantum Biological Theory]: a tekstbook. Harkov: Fakt. [In Russian].
Brown, G., Walken, J. (1982). Zhidkiye kristally i biologicheskiye struktury [Liquid crystals and biological structures]: a tekstbook. Moscow: Mir. [In Russian].
Bulyenkov, N. A. (1998). Obosnovaniye ponyatiya "kristallicheskiy modul'" [Justification of the concept of "crystal module"]. Vestnik Nizhegorodskogo universiteta imeni N. I. Lobachevskogo. Seriya Fizika tverdogo tela (Bulletin of the Nizhny Novgorod University named after N.I. Lobachevsky. Solid State Physics Series), 1, 19-30. [In Russian].
Bulyenkov, N. A. (1990). Parametricheskiye fraktal'no-tripletnyye struktury "svyazannoy" vody v vide zamknutykh poverkhnostey i vozmozhnost' nadmolekulyarnoy samosborki na nikh kapsul virusov [Parametric fractal-triplet structures of "bound" water in the form of closed surfaces and the possibility of supramolecular self-assembly of virus capsules on them]. Kristallografiya (Crystallography), 1(35), 155159. [In Russian].
Bulyenkov, N. A. (1988). Periodicheskiye dispiratsionno-modul'nyye almazopodobnyye struktury "svyazannoy vody" - vozmozhnyye konstruktsii, opredelyayushchiye konformatsiyu biopolimerov v strukturakh ikh gidratov [Periodic respiration-modular diamond-like structures of "bound water" - possible designs that determine the conformation of biopolymers in the structures of their hydrates]. Kristallografiya (Crystallography), 29 (33), 424-444. [In Russian].
Bulyenkov, N. A. (2006). Rol' modul'nogo dizayna v izuchenii protsessov sistemnoy samoorganizatsii [The role of modular design in the study of systemic self-organization processes]. Materialovedeniye (Materials Science), 9, 2-14. [In Russian].
Bulyenkov, N. A. (2006). Rol' modul'nogo dizayna v izuchenii protsessov sistemnoy samoorganizatsii (okonchaniye) [The role of modular design in the study of systemic self-organization processes (the ending)]. Materialovedeniye (Materials Science), 10, 2-13. [In Russian].
Bulyenkov, N. A. (1990). Samoorgani-zuyushchiyesya tripletnyye struktury ideal'nykh fraktalov "svyazannoy" vody s simmetriyey D3 i T [Self-organizing triplet structures of ideal fractals of "bound" water with D3 and T symmetry]. Kristallografiya (Crystallography), 1 (35), 147-154. [In Russian].
Bulyenkov, N. A. (2011). Sistemno-strukturnoye modul'noye obobshcheniye kristallografii svyazannoy vody dlya izucheniya mekhanizmov protsessov v biosistemakh na atomno-molekulyarnom urovne [System-structural modular generalization of bound water crystallography for studying the mechanisms of processes in biosystems at the atomic-molecular level]. Kristallografiya (Crystallography), 4 (56), 729746. [In Russian].
Bulyenkov, N. A., Zheligovskaya, E. A. (2014). Rol' svyazannoy vody i osaditeley v samoorganizatsii biokristallov [The role of bound water and precipitants in the self-organization of biocrystals]. Zhurnal strukturnoy khimii (Journal of Structural Chemistry), 1 (55), S30-S40. [In Russian].
Bulyenkov, N. A., Zheligovskaya, E. A. (2013). Sistemoobrazuyushchiye funktsii svyazannoy vody v mekhanizme topokhimicheskikh reaktsiy obrazovaniya ul'tratonkikh sloy§v na vodnoy poverkhnosti [System-Forming Functions of Bound Water in the Mechanism of Topochemical Reactions of the Formation of Ultrathin Layers on the Water Surface]. Biofizika (Biophysics), 1 (58), 8-26. [In Russian].
Bulyenkov, N. A., Zheligovskaya, E. A. (2006). Funktsional'naya modul'naya dinamicheskaya model' poverkhnostnogo sloya vody [Functional modular dynamic model of the surface layer of water]. Zhurnal fizicheskoy khimii (Journal of Physical Chemistry), 10 (80), 1784-1805. [In Russian].
Vernadskiy, V. I. (1931). Izucheniye yavleniy zhizni i novaya fizika [The study of the phenomena of life and the new physics]. Izvestiya Akademii nauk SSSR. Seriya OMEN (Proceedings of the Academy ofSciences of the USSR. OMEN series), (30), 403-437. [In Russian].
Gall, L. N. (2015). V mire sverkhslabykh. Nelineynaya kvantovaya bioenergetika: novyy vzglyad na prirodu zhizni. [In the world of the superweak. Nonlinear quantum bioenergetics: a new look at the nature of life]: a tekstbook. Moscow. [In Russian].
Gall, L. N. (2015). Materiya i zhizn' [Matter and life]: a tekstbook. St. Petersburg: Trade and Publishing House Amfora LLC, 2015. [In Russian].
Gall, L. N. (2014). Fizicheskiye printsipy funktsionirovaniya materii zhivogo organizma [Physical principles of the functioning of the matter of a living organism]: a tekstbook. St. Petersburg: Polytechnic University Publishing House. [In Russian].
Gall, L. N., Gall, N. R. (2010). Kollektivnyye protsessy v biomolekulyarnykh sistemakh [Collective processes in biomolecular systems]. Nauchno-tekhnicheskiye vedomosti Sankt-Peterbdrgskiy politekhnicheskiy universitet (Scientific and technical statements St. Petersburg Polytechnic University), 2, 141-151. [In Russian].
Gall, L. N., Gall, N. R. (2009). Mekhanizm mezhmolekulyarnoy peredachi energii i vospriyatiya sverkhslabykh vozdeystviy khimicheskimi i biologicheskimi sistemami [Mechanism of intermolecular energy transfer and perception of superweak impacts by chemical and biological systems]. Biofizika (Biophysics), 3 (54), 563-574. [In Russian].
Gall, L. N., Gall, N. R. (2008). Novyy podkhod k probleme bioenergetiki—novyye metody issledovaniy v naukakh o zhizni [A new approach to the problem of bioenergetics - new research methods in the life sciences]. Nauchnoye priborostroyeniye (Scientific Instrumentation), 2 (18), 52-60. [In Russian].
Davydov, A. S. (1984). Solitony v molekulyarnykh sistemakh [Solitons in molecular systems]: a tekstbook. Kyiv: Naukova Dumka. [In Russian].
Konovalov, A. I. (2013). Obrazovaniye nanorazmernykh molekulyarnykh ansambley v vysokorazbavlennykh vodnykh rastvorakh [Formation of Nanosized Molecular Ensembles in Highly Dilute Aqueous Solutions]. [In Russian].
Konyukhov, V. E., Tikhonov, V. I., Tikhonova T. L. (1986). Razdeleniye spinmodifikatsiy molekul vody i tyazheloy vody [Separation of spin modifications of water and heavy water molecules]. Pis'ma v zhurnal tekhnicheskoy fiziki (Letters to the journal of technical physics), 23 (12), 1438-1441. [In Russian].
Krasnobryzhev, V. G., Kurik, M. V. (2010). Kvantovyye effekty v prirodnoy vode [Quantum effects in natural water]. Kvantovaya magiya (quantum magic), 3 (7), 4132-4138. [In Russian].
Krasnobryzhev, V., Kurik, M. V. (2010). Svoystva kogerentnoy vody [Properties of coherent water]. Kvantovaya magiya (quantum magic), 2 (7), 2161-2166. [In Russian].
Kudryashov, N. A. (1997). Nelineynyye volny i solitony [Nonlinear waves and solitons]. Sorovskiy obrazovatel'nyy zhurnal (Sorov Educational Journal), 2, 86-91. [In Russian].
Kuznetsov, A. A. (2015). Biofizicheskiye osnovy zhivykh sistem: uchebnoye posobiye [Biophysical foundations of living systems]: a tekstbook. Vladimir: Vladimir State University Press. [In Russian].
Kurik, M. V. (2001). O fraktal'nosti pit'yevoy vody ("zhivaya voda") [On the fractality of drinking water ("living water")]. Fizika soznaniya i zhizn', kosmologiya i astrofizika (Physics of consciousness and life, cosmology and astrophysics), 3, 45-48. [In Russian].
Kurik, M. V. (1991). Mitselyarnost' i fraktal'nyye klastery biologicheskikh struktur [Micellarity and fractal clusters of biological structures]. Izvestiya akademii nauk SSSR. Seriya Fizika (Proceedings of the Academy of Sciences of the USSR. Series Physics), 55 (9), 1798-1803. [In Russian].
Kurik, M. V., Kurik А. М. (2005). Dissimmetriya - kriteriy zhivoy vody [Dissymmetry is a criterion of living water]. Kvantovaya magiya (quantum magic), 4 (2), 4134-4140. [In Russian].
Kurik, M. V., Lapitsky, V. N., Pesotskaya, L. A. (2010). Kirlianografiya pit'yevoy vody [Kirlianography of drinking water]. Soznaniye i fizicheskaya real'nost' (Consciousness and physical reality), 12 (5), 25-32. [In Russian].
Kurik, M. V., Martsinyuk, L. S. (2011). Strukturnyye i energeticheskiye svoystva prirodnoy vody [Structural and energetic properties of natural water]. Fizika soznaniya i zhizni, kosmologiya i astrofizika (Physics of consciousness and life, cosmology and astrophysics), 2, 13-32. [In Russian].
Lobyshev, V. I., Solovey, A. B., Bulenkov, N. A. (2003). Komp'yuternyy modul'nyy dizayn parametricheskikh struktur vody [Computer Modular Design of Parametric Water Structures]. Biofizika (Biophysics), 6 (48), 1011-1021. [In Russian].
Luchin, A. A., Shapiro, A. L. (2010). Priroda poley: vzglyad s pozitsiy klassicheskoy fiziki i opyta [The nature of fields: a view from the standpoint of classical physics and experience]: a textbook. URSS, Moscow. [In Russian].
Mintser, O. P., Zalisky, V. M. (2019). Systemna biomedytsyna. T.1: Kontseptualizatsiya [Systemic biomedicine. Volume 1: Conceptualization]: a textbook. Kyiv: Interservice. [In Ukrainian].
Mintser, O. P., Potyazhenko, M. M., & Nevoit, G. V. (2021). Mahnitoelektrokhimichna teoriya obminu rechovyn. Kontseptualizatsiya: 1 tom [Magnetoelectrochemical theory of metabolism. Conceptualization: 1 volume]: a textnook. Kyiv-Poltava, Interservice. [In Ukrainian].
Nevoit, G. V. (2021). Mahnitoelektrokhimichna kontseptsiya obminu rechovy: postulaty i osnovni vysnovky. Chastyna 2 [Magnetoelectrochemical concept of matter exchange: postulates and main conclusions. Part 2]. Aktual'ni problemy suchasnoyi medytsyny: Visnyk Ukrayins'koyi medychnoyi stomatolohichnoyi akademiyi (Actual problems of modern medicine: Bulletin of the Ukrainian Medical Stomatological Academy), 2 (21), 229-233. [In Ukrainian].
Nevoit, G. V. (2021). Mahnitoelektrokhimichna kontseptsiya obminu rechovy: postulaty i osnovni vysnovky. Chastyna 1 [Magnetoelectrochemical concept of matter exchange: postulates and main conclusions. Part 1]. Aktual'ni problemy suchasnoyi medytsyny: Visnyk Ukrayins'koyi medychnoyi stomatolohichnoyi akademiyi (Actual problems of modern medicine: Bulletin of the Ukrainian Medical Stomatological Academy), 1 (21), 203-209. [In Ukrainian].
Petrov, K. B., Mytychkina, T. V. (2010). Miovistserofastsial'nyye svyazi v traditsionnom i sovremennom predstavlenii [Myoviscerofascial connections in traditional and modern presentation]: a textnook. Novokuznetsk, Polygraphist LLC. [In Russian].
Pauling, L. (1974). Obshchaya khimiya [general chemistry]: a textbook. Moscow: Mir. [In Russian].
Polyak, E. A. (1992). Priznaki sverkhprovodimosti i sverkhtekuchesti v zhidkoy vode [Signs of superconductivity and superfluidity in liquid water]. Gipoteza (Hypothesis), 1, 20-31. [In Russian].
Potyazhenko, M. M., Nevoit, A. V. (2019). Energeticheskaya sistema cheloveka v svete sovremennykh fiziko-biologicheskikh znaniy, kontseptsiy, gipotez [The human energy system in the light of modern physical and biological knowledge, concepts, hypotheses]. Ukrayins'kyy medychnyy chasopys (Ukrainian medical journal), 4 (2), 24-29. [In Russian].
Potyazhenko, M. M., Nevoit, A. V. (2018). Energeticheskaya sistema cheloveka: chto izvestno ofitsial'noy nauke [The human energy system: what is known to official science]. Ukrayins'kyy medychnyy chasopys (Ukrainian medical journal), 6 (2), 22-24. [In Russian].
Potyazhenko, M. M., Nevoit, A. V. (2019). Neinfektsionnyye zabolevaniya: poisk al'ternativnykh resheniy problemy s biofizicheskikh pozitsiy [Non-communicable diseases: search for alternative solutions to the problem from biophysical positions]. Praktykuyuchiy likar (Practicing doctor), 1, 57-62. [In Russian].
Pupyshev, V. I. (1999-2000). Sovremennyye predstavleniya o khimicheskoy svyazi. Sovremennoye yestestvoznaniye: Entsiklopediya: V 10 tomakh Tom. 1. Fizicheskaya khimiya [Modern ideas about the chemical bond. Modern natural science: Encyclopedia: In 10 volumes Vol.1. Physical chemistry]: a textbook. Moscow: Science. [In Russian].
Ryzhkina, I. S., Murtazina, Yu. V., Kiseleva, A. I. & other (2009). Svoystva supramolekulyarnykh nanoassotsiatov, obrazuyushchikhsya v vodnykh rastvorakh nizkikh i sverkhnizkikh kontsentratsiy biologicheski aktivnykh veshchestv [Properties of supramolecular nanoassociates formed in aqueous solutions of low and ultra-low concentrations of biologically active substances]. Doklady akademii nauk (Reports of the 51. Tsirelson, V. G. (2015). Kvantovaya khimiya [quantum chemistry]: a textbook. Moscow: Binom. [In Russian].
Samoilov, V. O. (2013). Meditsinskaya biofizika [Medical biophysics]: a textbook. St. Petersburg: SpetsLit. [In Russian].
Szent-Gyorgyi, A. (1971). Bioelektronika. Issledovaniye v oblasti kletochnoy regulyatsii, zashchitnykh mekhanizmov i raka [Bioelectronics. Research in Cellular Regulation, Defense Mechanisms and Cancer]: a textbook. Moscow: Mir. [In Russian].
Slesarev, V. I. (2000). Khimiya. Osnovy khimii zhivogo: Uchebnik dlya vuzov [Chemistry. Fundamentals of Living Chemistry: A Textbook for Universities]: a textbook. St. Petersburg: Himizdat. [In Russian].
Tyushev, A. N. (2020). Fizika v konspektivnom izlozhenii. Chast' 3. Osnovy molekulyarnoy fiziki i termodinamiki. Kvantovaya fizika. Fizika v konspektivnom izlozhenii [Physics in a concise presentation. Part 3. Fundamentals of molecular physics and thermodynamics. The quantum physics. Physics in a nutshell]: internet // URL: https://www.twirpx.com/file/599159/.[In Russian].
Tsirelson, V. G. (2015). Kvantovaya khimiya [quantum chemistry]: a textbook. Moscow: Binom. [In Russian].
Schrodinger, E. (2018). Chto takoye zhizn'? Fizicheskiy aspekt zhivoy kletki: Russkiy perevod Cambridge, 1944 [What is life? The physical aspect of the living cell: Russian translation Cambridge, 1944]: a textbook. Moscow: AST. [In Russian].
Bai, J., Wang, J., Zeng, C. (2006). Multiwalled Ice Helixes and Ice Nanotubes. Proc. Natl. Acad. Sci., 103 (52), 19664-19667. DOI: 10.1073/pnas.0608401104.
Bulienkov, N. A., Zheligovskaya, E. A. (2006). Functional modular dynamic model of the surface layer of water. Russian Journal of Physical Chemistry, 10 (80), 1584-1604. DOI https://doi.org/10.1134/S0036024406100086.
Bulienkov, N. A., Zheligovskaya, E. A. (2013). System-forming functions of bound water in the mechanism of topochemical reactions of formation of ultrathin layers on water surface, 1 (58), 1-18. DOI: https://doi.org/10.1134/S0006350913010041.
Davydov, A. S. (1977). Solitons as energy carries in biological systems. Studia Biophys, 62 (1), 1-8.
Davydov, A. S. (1976). Solitons in one-dimensional chains. Phys. Stat. Sol. (b), 75, 735-742.
Davydov, A. S. (1973). The theory of contraction of proteins under their excitation. J. Theor. Biol., 38, 559-569.
Del Giudice, E., Spinetti, P. R., Tedeschi, A. (2010). Water dynamics at the root of metamorphosis in living organisms. Water, 2, 566-586.
Frohlich, H. (1980). Advances in electronics and electron physics: a textbook 1st Edition. Ed. L. Marton. Academic Press.
Frohlich, H. (1968). Long-ranch coherence and energy storage in biological systems. Int. J. Quantum. Chem., 2, 641-649.
Frohlich, H., Kremer, F. (1985). Coherent Excitations in Biological Systems: a textbook. Berlin, Springer-Verlag.
Gulyar, S. A. (2018). Accent of the human body electromagnetic balance regulation system. Photobiology and Photomedicine, 24, 52-68.
Gulyar, S. A., Tamarova, Z. A. (2017). Modification of Polychromatic Linear Polarized Light by Nanophotonic Fullerene and Graphene Filter Creates a New Therapeutic Opportunities. J. of US-China Medical Science, 14 (5), 173-191.
Mintser, O. P., Potiazhenko, M. M., Nevoit G. V. (2019). Evaluation of the human bioelectromagnetic field in medicine: the development of methodology andprospects are at the present scientific stage. Wiadomosci Lekarskie, 5 (II), 1117-1121. DOI:10.36740/ WLek201905231.
Mintser, O. P., Semenets, V., Potiazhenko, M. М., Рodpruzhnykov, P. М., Nevoit G. V. (2020). The study of the electromagnetic component of the human body as a diagnostic indicator in the examination of patients with Non-communicablediseases: problem statement. Wiadomosci Lekarskie, 6 (73), 1279-1283. DOI:10.36740/WLek202006139.
Myers, T. W. (2014). Anatomy Trains: Myofascial Meridians for Manual and Movement Therapists: a textbook. Churchill Livingstone.
Nevoit, G., Bumblyte, I.A., Potyazhenko, M., Mintser O. (2022). Modern biophysical view of electromagnetic processes of the phenomenon of lifeof living biological systems as a promising basis for the development of complex medicine: the role of cell membranes. Journal of Complexity in Health Sciences, 5, 22-34. DOI:10.21595/chs.2022.22787.
Petukhov, M., Cregut, D., Soares, C. M., Serrano L. (1999). Local water bridges and conformational stability. Protein Science, 8, 1982-1989.
Schrodinger, E. (1944). What is the Life? The Physical Aspect of the Living Cell: a textbook. Cambridge: University Press.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal Medical Informatics and Engineering allows the author(s) to hold the copyright without registration
The majority of Medical Informatics and Engineering Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License which permits use, distribution and reproduction in any medium, provided the original work is properly cited. The remaining journals offer a choice of licenses.
This journal is available through Creative Commons (CC) License CC-BY 4.0