ANALYSIS OF THE POSSIBILITIES OF LONG-TERM STORAGE OF DATA ON DNA

Authors

  • A. A. Kryuchyn Institute for Information Reсording of the National Academy of Sciences of Ukraine
  • Ie. V. Belyak Institute for Information Reсording of the National Academy of Sciences of Ukraine
  • Ye. A. Kryuchyna Kyiv City Clinical Hospital № 10
  • A. V. Shikhovets Institute for Information Reсording of the National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.11603/mie.1996-1960.2020.3.12390

Keywords:

DNA memory, sequencing, polymerase chain reaction, concept of «DNA of things»

Abstract

Background. For several decades, progress in storage technologies has been measured primarily in terms of storage capacity and data read / write speed, with the amount of information generated increasing every day. The purpose of the study was to analyze the various technologies used to store digital data on DNA, the pros and cons of each of the methods used, as well as the advantages and limitations of using DNA as an information carrier.

Materials and methods. Results. The reliance on DNA as a dense storage medium with high storage capacity and its ability to withstand extreme environmental conditions has increased over the past few years. The presented work presents the results of a critical analysis of the prospects for using DNA memory for long-term storage of information. It is shown that DNA memory provides both information recording with a high recording density and its long-term storage. These data indicate that DNA memory technologies can contribute to significant changes in the archival storage of data. The analysis of the areas of application of DNA memory, codes used to represent data in DNA memory. A number of approaches to the design of DNA codons and data storage are analyzed in detail, certain pros and cons of each of them.

Conclusions. Methods of steganography using DNA molecules for the safe storage of information are discussed. At the same time, the high cost of DNA, the impossibility of quick access to information, the need for expensive equipment for reading and writing makes this type of storage device still suitable for limited use.

References

Petrov V. V., Le Zichun, Kryuchyn A. A. et al. (2018). Long-term storage of digital information. doi: 10.15407/ Аkademperiodyka.360.148.

Lin K. N., Volkel K., Tuck J. M., Keung А. J. (2020). Dynamic and scalable DNA-based information storage. Nature Communications. Vol. 11.

Petrov V. V., Kryuchyn A. A., Shanoilo S. M. et al. (2003). Ways to solve the problem of long-term storage of information recorded in digital form. Reports of the National Academy of Sciences of Ukraine, 4, 52-58. [In Ukranian].

Kryuchyn A. A., Beliak Ie. V., Kryuchyna E. A., Potebnya

A. V. (2015). The state and problems of creating DNA memory. Medical Informatics and Engineering, 3 (31), 9-16. [In Ukranian].

Dong Y., Sun F., Ping Z., Ouyang Q., Qian L. (2020). DNA storage: research landscape and future prospects. National Science Review, Vol. 7, Issue 6, 1092-1107.

Potomac Institute for Policy Studies. The Future of DNA Data Storage. https://potomacinstitute.org/images/ studies/Future_of_DNA_Data_Storage.pdf .

The Rise of DNA Data Storage Could DNA as an archival medium be the solution to our information overload?. https://www.wired.com/story/the-rise-of-dna-data-storage/

Akram F., Haq I., Ali H., Laghari A. T. (2018). Trends to store digital data in DNA: an overview. Molecular Biology Reports, Vol. 45, 1479-1490.

De Silva P.Y., Ganegoda G. U. (2016). NewTrends of Digital Data Storage in DNA. BioMed research international, Vol. 2016. https://doi.org/10.1155/2016/8072463.

Organick L., Chen Y. J., Dumas Ang S., Lopez R., Liu X., Strauss K., Ceze L. (2020). Probing the physical limits of reliable DNA data retrieval. Nature communications, 11(1). https://doi.org/10.1038/s41467-020-14319-8.

Church G. M., Gao Y., Kosuri S. (2012). Next- Generation Digital Information Storage in DNA. Science, 337:6102, 1628.

Langston J. (2019). With a «hello,» Microsoft and UW demonstrate first fully automated DNA data storage. https://news.microsoft.com/innovation-stories/hello- data-dna-storage/.

Shankland S. (2019). Startup packs all 16GB of Wikipedia onto DNA strands to demonstrate new storage tech - Biological molecules will last a lot longer than the latest computer storage technology, Catalog believes. CNET.

Organick L., Ang S., Chen Y. J. et al. (2018). Random access in large-scale DNA data storage. Nat Biotechnol., 36, 242-248.

Koch J., Gantenbein S., Masania K. et al. (2020). DNA- of-things storage architecture to create materials with embedded memory. Nat Biotechnol, 38, 39-43. https:// doi.org/10.1038/s41587-019-0356-z.

«DNA of Things» – Storing Extensive Data in Everyday Objects. https://scitechdaily.com/dna-of-things-storing- extensive-data-in-everyday-objects/.

Jung L., Hogan M. E., Sun Y. et al. (2019). Rapid authentication of pharmaceuticals via DNA tagging and field detection. PLoS ONE, 14(6), e0218314.

Chen Y., Takahashi C. N., Organick L. et al. (2020). Quantifying molecular bias in DNA data storage. Nature Communications, 11.

Banal J. L., Shepherd T. R., Berleant J. et al. (2020). Random access DNA memory in a scalable. doi: 10.1101/2020.02.05.936369 PPR: PPR112067.

Blawat M., Gaedke K. ,Hütter I. (2016). Forward Error Correction for DNA Data Storage Procedia. Computer Science, 80, 1011-1022.

Goldman N., Bertone P., Chen S. et al. (2013). Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature, 494, 77-80. doi:10.1038/nature11875.

Erlich Y., Zielinski D. (2017). DNA Fountain enables a robust and efficient storage architecture. Science, 355 (6328), 950-954. doi: 10.1126/science.aaj2038. PMID: 28254941.

Shipman S., Nivala J., Macklis J. et al. (2017). CRISPR

– Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature, 547, 345-349.

Shabbir M. Abu Bakr, Wu Q., Mahmood S. et al. (2019). CRISPR – cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Annals of Clinical Microbiology and Antimicrobials, 18.

Ceze L., Nivala J., Strauss K. (2019). Molecular digital data storageusing DNA. Nature Reviews Genetics. https://www.gwern.net/docs/genetics/editing/2019- ceze.pdf.

Fister K., Fister Jr. I., Murovec J. (2017). The Potential of Plants and Seeds in DNA – Based Information Storage. In book: Understanding Information, 69-81. doi: 10.1007/978-3-319-59090-5_4.

Arita M., Hagiya M., Takinoue M., Tanaka F. (2012). DNA Memory. In: Rozenberg G., Bäck T., Kok J. N. (eds). Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540- 92910-9_38.

Erlich Y., Zielinski D. Capacity-approaching DNA storage. (2016). doi: https://doi.org/10.1101/074237.

Press W. H., Hawkins J. A. et al. (2020). HEDGES error-correcting code for DNA storage corrects in dels and allows sequence constraints. PNAS, 117 (31), 18489-18496.

Grass R. N., Heckel R., Paunescu M. D. et al. (2015). Robust Chemical Preservation of Digital Information on DNA in Silica with Error-Correcting Codes. Angew Chem Int Ed., 54, 2552-5.

Ivanova N.V., Kuzmina M. L. (2013). Protocols for dry DNA storage and shipment at room temperature. Mol Ecol Resour., 13 (5), 890-898. doi: 10.1111/1755-0998.12134.

Pomogaibo V. M., Orlova L. D., Vlasenko N. O. (2016). DNA of the environment: ecological and genetic aspects. Ecology and noospherology, 27, 1-2, 16-24. [In Ukranian].

Allentoft M. E., Collins M., Harker D. et al. (2012). The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B., 279, 4724-4733.

Howlett S. E., Castillo H. S., Gioeni L. J. (2014). Evaluation of DNA stable™ for DNA storage at ambient temperature. Forensic Sci Int Genet, 8, 1, 170-178.

Hofreiter M., Mead J. I., Martin P., Poinar H.N. (2003). Molecular caving. Curr. Biol., 13 (18), 693-695. doi: 10.1016/j.cub.2003.08.039.

Farzadfard F., Lu T. K. (2018). Emerging applications for DNA writers and molecular recorders. Science, 361 (6405), 870-875. doi: 10.1126/science.aat9249.

Puddu M., Stark W. J., Grass R. N. (2015). Silica Microcapsules for Long-Term, Robust, and Reliable Room Temperature RNA Preservation. Adv Healthc Mater., 4 (9), 1332-1338. doi: 10.1002/adhm.201500132.

Published

2021-09-22

How to Cite

Kryuchyn, A. A., Belyak, I. V., Kryuchyna, Y. A., & Shikhovets, A. V. (2021). ANALYSIS OF THE POSSIBILITIES OF LONG-TERM STORAGE OF DATA ON DNA. Medical Informatics and Engineering, (3), 18–32. https://doi.org/10.11603/mie.1996-1960.2020.3.12390

Issue

Section

Articles