SELF-ORGANIZATION OF PEPTIDE NANOSTRUCTURED SEMICONDUCTORS - A POTENTIAL BASIS FOR BRIDGING THE GAP BETWEEN INORGANIC AND ORGANIC LIVING ELEMENTS

Authors

  • O. P. Mintser Shupyk National Medical Academy of Postgraduate Education
  • V. M. Zaliskyi Shupyk National Medical Academy of Postgraduate Education

DOI:

https://doi.org/10.11603/mie.1996-1960.2020.1.11127

Keywords:

molecular self-assembly, structural DNA nanotechnology, molecular recognition, oligonucleotide, oligopeptide, self-assembly of phthalocyanines and porphyrazines, bioinspired materials

Abstract

Background. Research is devoted to the problems of using biological tools for non-biological applications of nanotechnology, such as microelectronics and nanoelectronics, microelectromechanical and nanoelectronic systems. The purpose of the study was to summarize the experience of using biological tools and scaffolds to create peptide nanostructured semiconductors.

Materials and methods. Results. Providing greater protein selectivity in biological chemistry can be achieved by the simultaneous use of several inorganic materials for parallel construction, such as, for example, the first combination of DNA-based self-assembly and molecular recognition of peptides to demonstrate pattern-synthesis synthesis. Short peptides, in particular containing aromatic amino acids, can self-organize into various supramolecular structures that remain kinetically and thermodynamically stable to form diphenylalanine or phenylalanine-tryptophan aggregates. Various methods of aggregation can be used to initiate specific functionalized organization of nanostructured blocks with fine-tuned structural geometry and controlled semiconductor characteristics. Such tuning methods include microfluidics, molecular modification, chemical and physical vapor deposition methods, an integrated strategic simultaneous stacking method, and the use of an external electromagnetic field. Involvement of the theory of molecular density showed that large directional aromatic amino acid interactions of hydrogen - bonding networks lead to the formation of quantum - closed regions in the organic nanostructures underlying the molecular origin of their semiconductivity.

Conclusions. Recent studies have additionally identified some of the physicochemical features of bioinspired supramolecular organic semiconductors, including stable absorption spectra characteristic of one-dimensional quantum dots or two-dimensional quantum wells (piezo- and pyroelectric) properties.

References

Antsypovich, S. I. (2002). Peptidno-nukleinovyye kisloty: struktura, svoystva, primeneniye, strategii i praktika khimicheskogo sinteza [Peptide-nucleic acids: structure, properties, application, strategies and practice of chemical synthesis]. Uspekhi khimii (The success of chemistry), 71 (1), 81-96. [In Russion].

Mintser, O. P. (2010). Strategii poiska napravleniy issledovaniy s ispol'zovaniyem nanotekhnologiy [Strategies for Searching Research Directions Using Nanotechnology]. Elektronika i svyaz'. Tematich. vypusk «Elektronika i nanotekhnologii» (Electronics and communications. Thematic. issue «Electronics and Nanotechnology»), 5, 15-8. [In Russion].

Zalessky, V. N., Movchan, B. A. (2012). Personalizirovannaya meditsina: perspektivy ispol'zovaniya nanobiotekhnologiy [Personalized medicine: prospects for the use of nanobiotechnology]. Ukr. med. chasopis (Ukr. med. chronicle), 1 (27), 3842. [In Russion].

Rapis, E. G. (2004). Samoorganizatsiya i supermolekulyarnaya khimiya plenki belka ot nano — do makromasshtaba [Self-organization and supermolecular chemistry of a protein film from nano to macroscale]. Zhurnal tekhnicheskoy fiziki (Journal of Technical Physics), 74 (4), 117-22. [In Russion].

Adler-Abramovich, L., Koln., Yanai, I. et al. (2010).

Self-assembled organic nanostructures with metallic like stiffness. Angew. Chem. Int. Ed. Engl., 49 (51), 9939-42.

Adler-Abramovich, L., Gasit, E. (2014). The physical

properties of supramolecular peptides assemblies: from building bloke association to teleological applications. Chem. Soc. Rev., 43, 6881-6893.

Aida, T., Meijer, E. W., Stupp, S. I. (2012). Functional

supramolecular polymers. Science, 335, 813-7.

Amdursky, N., Molotskii, M., Gazit, E. et al. (2010).

Elementary building blocks of self-assembled peptide nanotubes. J. Am. Chem. Soc., 132 (44), 15632-36.

Arnon, Z. A., Vitalis, A., Leviu, A. et al. (2016). Dynamic microfluidic control of supramolecular peptides self-assembly. Nat. Commun., 7, 13190.

Berger, O., Adler-Abramovich, L., Levy-Sakin, M. et al. (2015). Light - emitting self-assembled peptide nucleic acid exhibit both stacking interaction and Watson - crick base pairing. Nat. Nano thechonol., 10 (4), 353-60.

Chan, F. T., Pinotsi, D., Schierle, G. S. K. et al. (2014). Structure - specific intrinsic fluorescence of protein of protein amyloids used to study their kinetics of aggregation. In: Uversky V., Lynbchenko Y (Eds.) Bio Nano imaging: Protein Misfolding and Aggregation. Elsevier: New York.

Chen, J., Qin, S., Wu, X. et al. (2016). Morphology and pattern control of phenylalanine sect-assembly via evaporative deleting. ACS Nano, 10 (1), 832-8.

Dela Rica, R., Mendoza, E., Matsui, H. (2010). Bio inspired target- specific crystal ration on peptide nanotubes for ultrasensitive PB ion detection. Small, 6 (16), 1753-6.

Draper, E. R., Greeves, B. J., Barrow, M. et al. (2017). pH-Directed aggregation to control photoconductivity of self-assembled periling - bisimides. Chem., 2 (3), 716-31.

Eakins, G. L., Gallaher, J. K., Keyzers, R. A. et al. (2014). Thermodynamic factors impacting the peptide - driven selt-assembly of periling di imide Nano fibers. J. Phys. Chem. B., 118 (29), 8642-51.

Hauser, C. A. E., Zhang, S. (2010). Nano technology: Peptides as biological semiconductors. Nature, 468, 516-7.

Hill, R. J. A., Sedcuan, V. L., Allen, S. et al. (2007). Alignment of aromatic peptide tables in stony magmatic fields. Advanced Materials, 19 (24), 4474-9.

Heredia, A., Bdikin, I., Koppl, S. et al. (2010). Temperature - driven phase transformation in self-assembled diphenylamine peptide nanotubes. J. Phys D: Appl. Physics., 43 (46), 462001.

Fang, X. S., Bando, Y., Gantam, U. K. et al. (2008). Organic semiconductor nano streamers and their field Emission application. J. Mater. Chem., 18, 509-22.

Guo, C., Arnon, Z. A., Qi, R. et al. (2016). Expanding the nano architectural diversity through aromatic di-and tripeptide co assembly: nano structures and molecular mechanism. CAN Nano, 10 (9), 8316-24.

Gan, Z., Wu, X., Zhu, X., Shen, J. (2013). Light -induced Ferro electricity in bicinspired self-assembled phenylalanine nanotubes, micro tubes. Angew. Chem. Int. Ed. Engl., 52 (7), 2055-9.

Gazi, E. (2016). Peptide nano structures: aromatic dipeptides light up. Nat. Nano technol., 11, 309-10.

Kresse, G., Hafner, J. Ab. (1994). Initio molecular -dynamics simulation of the lined - metal - amorphous - semiconduc for transition in germanium. Phys. Rev. B, 49, 14251-69.

Levin, A., Mason, T. O., A-Abramovich, L. et al. (2014). Ostwald's rule of stage governs structure transitions and morphology of dipeptide supramolecular polymers. Nat. Commun., 5, 5219.

Lin, X., Fei, J., Wang, A. et al. (2017). Transformation of dipeptide - based organ gels into chiral crystals by cryogenic treatment. Angew. Chem. Int. Ed. Engl., 56 (10), 2660-3.

Mason, T. O., Chirgadre, D. Y., Levin, A. et al. (2014). Expanding the solvent chemical space for self - assembly of dipeptide nano structure. ACS Nano, 8 (2), 1243-53.

Nguyen, V., Zhu, R., Jen Kins, K., Yang, R. (2016). Self-assembly of phenylalanine peptide with controlled polarization for power generation. Nat. Commun., 7, 13566.

Pinotsi, D., Buell, A. K., Dobson, C. M. et al. (2013). A label-free quantitative assay of amyloid fibril growth based on intrinsic fluorescence. Chem Bio. Chem., 14, 846-50.

Pinotsi, D., Grisanti, L., Mahou, P. et al. (2016). Proton transfer and structure - specific fluorescence in hydrogen bond - rich protein structures. J. Amer. Chem. Soc., 138 (9), 3046-57.

Reches, M., Gazit, E. (2003). Casting metal nanowires within discrete self-assembled peptide nano tubles. Science, 300, 625-7.

Santhanamoozthi N. (2011). Diphenylalanine peptide nano tube: charge transport, band gap and its relevance to potential biomedical application. Adv. Mat. Lett., 2, 100-105.

Tan, Y. N., Lee, J. Y., Wang, D. K. (2010). Uncovering the design rules for peptide synthesis of metal nano particles. J. Am. Chem. Soc., 132, 5677-86.

Tao, K., Levin, A., Adler, A. L. et al. (2016). F moc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chem. Soc. Rev., 45, 3935-53.

Tao, K., Makam, P., Aizen, R. et al. (2017). Self-assembling peptide semiconductors. Science, 3Б8 (636Б), 9756.

Trung, W. T., Su, Y., Gloria, D. et al. (2015). Dissolution and degradation of F moc- diphenylalanine self-assembled gels desalts in necrosis at high concentrations in vitro. Biomater. Sci., 3, 298-307.

Van Nostrum, C. F., Nolte, R. J. M. (1996). Functional supramolecular materials: self-assembly of phthalocyanines and porphyrins. Chem. Commnn., 2385-92.

Vasuden, M. C., Kocruner, H., Singh, K. M. et al. (2004). Vertically aligned peptide nano structures using plasma enhanced chemical vapor deposition. Biomacromolecules, 15 (2), 533-40.

Yan, X., Li, J., Mohwald, N. (2011). Self-assembly of hexagonal peptide micro tubes and their optical waveguide. Adv. Mater., 23, 2796-801.

Yan, X., Su, Y., Li, J. et al. (2011). Uniaxial oriented peptide crystals for active magical waveguiding. Angew. Chem. Int. Ed. Engl., 50 (47), 11186-91.

Published

2020-06-22

How to Cite

Mintser, O. P., & Zaliskyi, . V. M. (2020). SELF-ORGANIZATION OF PEPTIDE NANOSTRUCTURED SEMICONDUCTORS - A POTENTIAL BASIS FOR BRIDGING THE GAP BETWEEN INORGANIC AND ORGANIC LIVING ELEMENTS. Medical Informatics and Engineering, (1), 29–37. https://doi.org/10.11603/mie.1996-1960.2020.1.11127

Issue

Section

Articles