• V.V. Petrov Institute for Information Recording of the National Academy of Sciences of Ukraine
  • O. P. Mintser Shupyk National Medical Academy of Postgraduate Education
  • A. A. Kryuchyn Institute for Information Recording of the National Academy of Sciences of Ukraine
  • Ye. A. Kryuchyna Kyiv City Clinical Hospital № 10
Keywords: biomedical information, Big Data, personalized medicine.


Background. The future of medicine offers a personalized multimodal approach, focused on the patient, integrated care, intelligent decision support systems for doctors, telemedicine. The solution to these problems can be achieved by Big Data technologies, although their use is controversial.

Materials and methods. The analysis of databases Scopus, Web of Science, Ulrich's Periodicals, eLIBRARY.RU, Google Scholar, PubMed, Medline, EMBASE, EconLit, Cochrane Library, UpToDate, ACP Journal Club, HINARI, http://www.meta. ua,, etc. for the period from 2007 to 2019 for the keywords "Big Data", "medicine" was made.

Results. It is shown that the goals of using Big Data are to create the most complete registers of medical data exchanging information with each other, use the accumulated information to predict the possibility of the development of diseases and their prevention for each patient, prevent epidemics, create a pricing and payment system, new business models, the use of predictive modeling in the development of drugs, the introduction of electronic patient records that would be available to everyone his doctor, which allows the introduction of personalized medicine. The main Big Data processing technologies are NoSQL, MapReduce, Hadoop, R, hardware solutions. It is proved that the use of Big Data technologies in medicine can be achieved with the widespread use of digital presentation of biomedical information, the feasibility and necessity of ensuring its prompt transmission, including via mobile communications, are shown, unresolved issues in the application of Big Data are indicated (unstructured, syntactic and semantic data problems, redundancy and risk of information distortion, incomplete compliance with the requirements of evidence-based medicine, legal, moral and ethical, insurance aspects, the inadequacy of traditional security mechanisms such as firewalls and anti-virus software).

Conclusions. The data presented indicate the promise of using these technologies to significantly improve the quality of medical care for the population.


Afanasyeva, A. (2016). A new history of medicine at the beginning of the 21st century: new development trends. Lecturer XXI, 486-499. [In Russian].

Shuliak, V. I. International experience of application of integrated clinical protocol in medical practice (literature review). Retrieved from [In Ukrainian].

Ignatieva, G. F. Standardization of medical care as a factor of socialization of state administrative ervices. Retrieved from txts/07igfsas.htm. [In Ukrainian].

Cirillo, D., Valencia, A. (2019). Big data analytics for personalized medicine. Current Opinion in Biotechnology, 58 (8), 161-167. doi: 10.1016/j. copbio.2019.03.004.

Waseh, S., Dicker, A. P. (2019). Telemedicine Training in Undergraduate Medical Education: Mixed-Methods Review. JMIR Med Educ, 5(1), e12515. Retrieved from doi: 10.2196/12515.

Strang, K., Sun, Z. (2019). Hidden big data analytics issues in the healthcare industry. Health Informatics. Retrieved from https://journals.sagepub. com/doi/abs/10.1177/1460458219854603. doi: 10.1177/1460458219854603.

Kamlet, L. (2019). The Big Data Evolutio. Eur Heart J, 40 (25), 1995-6. doi: 10.1093/eurheartj/ehz416.

Aziz, M. (2017). Big data, small airways, big problems. Br J Anaesth. 119 (5), 864-866. doi: 10.1093/bja/aex362.

Press, G. (2013). Very Short History of Big Data. Forbes. Retrieved from gilpress/2013/05/09/a-very-short-history-of-big-data/#125fecab65a1.

Foote, K. (2017). Big Data and the History of Information Storage. Dataversity. Retrieved from http:// www.

Petrov, V. V., Mintser, O. P., Kryuchyn, A. A., Kryuchyna, Ye. A. (2017). Problems of storage of medical and biological information. Medical Informatics and Engineering, 3, 52-62. [In Russian]. doi: http://dx.doi. org/10.11603/mie.1996-1960.2017.3.8182.

Ristevski, B., Chen, M. (2018). Big Data Analytics in Medicine and Healthcare. Journal of Integrative Bioinformatics, 15(3), 30-45. doi: 10.1515/jib-2017-0030.

Tsvetkova, L. A., Cherchenko, O. V. (2016). Introduction of big data technologies in healthcare: assessment of technological and commercial prospects. Economics of science, 2(2), 138-150. [In Russian].

Hackenberger, B. (2019). Data by data, Big Data. Croat Med J., 60(3), 290-292. doi: 10.3325/cmj.2019.60.290.

Zhang, Y., Guo, S. L., Han, L., Li, T. L. (2016). Application and Exploration of Big Data Mining in Clinical Medicine. Chin Med J (Engl), 129(6), 731-738. doi: 10.4103/0366-6999.178019.

Lee, L. H. (2017). Medical big data: promise and challenges. Kidney Res Clin Pract., 36(1), 3-11. doi: 10.23876/j.krcp.2017.36.1.3.

Bellazzi, R. (2014). Big data and biomedical informatics: a challenging opportunity. Yearb Med Inform., 8-13. doi: 10.15265/IY-2014-0024.

Lee, C., Yoon, H. (2017). Medical big data: promise and challenges. Kidney Res Clin Pract., 36(1), 3-11. doi: 10.23876/j.krcp.2017.36.1.3.

Kalayda, I. (2016). BigData - a new word in medicine. Retrieved from [In Russian].

Trifonova, O., Il'in, V., Kolker, E., Lisitsa, A. (2013). Big data in biology and medicine. Acta Naturae, 3(16), 138-147.

Tan, S., Gao, G., Koch, S. (2015). Big data and analytics in healthcare. Methods Inf Med., 54(6), 546-547. doi: 10.3414/ME15-06-1001.

Hulsen, T., Jamuar, S., Moody, A. et al. ( 2019). From Big Data to Precision Medicine. Front Med. (Lausanne). Retrieved from https://www.ncbi.nlm.nih. gov/pubmed/30881956.eCollection 2019. doi: 10.3389/ fmed.2019.00034.

Olivera, P., Danese, S., Jay, N., Natoli, G., Peyrin-Biroulet, L. (2019). Big data in IBD: a look into the future. Nat Rev Gastroenterol Hepatol., 16(5), 312-321. doi: 10.1038/s41575-019-0102-5.

Qian, T., Zhu, S., Hoshida, Y. (2019). Use of big data in drug development for precision medicine: an update. Expert Rev Precis Med Drug Dev., 4(3), 189-200. doi: 10.1080/23808993.2019.1617632.

Knight, S., Ots, R., Maimbo M. et al. (2019). Systematic review of the use of big data to improve surgery in low- and middle-income countries. Br J Surg., 106(2), e62-e72. doi: 10.1002/bjs.11052.

He, K., Ge, D., He, M. (2017). Big data analytics for genomic medicine. Int J Mol Sci., 18(2), 412-430. doi: 10.3390/ijms18020412.

Guihard, S., Thariat, J., Clavier, J. (2017). Big data and their perspectives in radiation therapy. Bull Cancer., 104(2), 147-156. doi: 10.1016/j.bulcan.2016.10.018.

Cha, H., Jung, J., Shin, S. (2019). The Korea Cancer Big Data Platform (K-CBP) for Cancer Research. Int J Environ Res Public Health, 16(13), E2290. doi: 10.3390/ ijerph16132290.

Hernandez, I., Zhang, Y. (2017). Using predictive analytics and big data to optimize pharmaceutical outcomes. Am J Health Syst Pharm., 74(18), 1494-1500. doi: 10.2146/ajhp161011.

Tan, S., Gao, G., Koch, S. (2015). Big Data and Analytics in Healthcare. Methods Inf Med, 54(6), 546-547. doi: 10.3414/ME15-06-1001.

Damiani, A., Onder, G., Valentini, V. (2018). Large databases (Big Data) and evidence-based medicine. Eur J Intern Med., 53(7), 1-2. doi: 10.1016/j.ejim.2018.05.019.

Chen, Y., Wang, Q., Zeng, X. (2017). Exploration and analysis of big data from the perspective of evidence-based medicine. Zhonghua Nei Ke Za Zhi., 56:3, 167-170. [In Chinese]. doi: 10.3760/ sn.0578-1426.2017.03.003.

Archenaa, J., Anita, E. (2015). A survey of big data analytics in healthcare and government. Procedia Comput Sci., 50(10), 408-413. doi: 10.1016/j.procs.2015.04.021.

Bauer, M. (2016). Big data, technology, and the changing future of medicine. Medicographia, 38(4), 401-410.

Zhu, J., Chen, T. et al. (2019). Database Resources of the BIG Data Center in 2019. Nucleic Acids Res., 47(D1), D8-D14. doi: 10.1093/nar/gky993.

Ruping, S. (2015). Big data in medicine and healthcare. Bundesgesundheitsblatt Gesundheitsforschung, 58(8), 794-798. doi: 10.1007/s00103-015-2181-y.

Kozin, M. (2018). Application of Big Data in Medicine. Retrieved from primenenie-big-data-v-medicine.

Strazhinsky, A. (2019). How Ukrainians work with Big Data. Retrieved from Kak_ukraintsi_rabotayut_s_Big_Data.html?print.

Suwinski, P., Ong, C., Ling, M. et al. (2019). Advancing Personalized Medicine Through the Application of Whole Exome Sequencing and Big Data. Analytics. Front. Genet., 18(2), 49-59. doi: 10.3390/ijms18020412.

Cobb, A., Benjamin, A., Huang, E., Kuo, P. (2018). Big data: More than big data sets. Surgery, 164(4), 640-642. doi: 10.1016/j.surg.2018.06.022.

Wu, P., Cheng, C., Kaddi, C. et al. (2017). Omic and Electronic Health Record Big Data Analytics for Precision Medicine. IEEE Trans Biomed Eng., 64(2), 263-273. doi: 10.1109/TBME.2016.2573285.

Peters, S., Buntrock, J. (2014). Big data and the electronic health record. J.Ambul Care Manage., 37(3), 206-210. doi: 10.1097/JAC.0000000000000037.

Gruning, B., Lampa, S., Vaudel, M., Blankenberg, D. (2019). Software engineering for scientific big data analysis. Gigascience, 8(5), 1-6. doi: 10.1093/ gigascience/giz054.

Mooney, S., Pejaver, V. (2018). Big Data in Public Health: Terminology, Machine Learning, and Privacy. Annu Rev Public Health, 39(4), 95-112. doi: 10.1146/ annurev-publhealth-040617-014208.

Abidi, S.S.R., Abidi, S.R. (2019). Intelligent health data analytics: A convergence of artificial intelligence and big data. Health Manage Forum, 32(4), 178-182. doi: 10.1177/0840470419846134.

Dinov, I. (2016). Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data. Gigascience, 5(1), Article number: 12 . doi: 10.1186/s13742-016-0117-6.

Luo, J., Wu, M., Gopukumar, D., Zhao, Y. (2016). Big Data Application in Biomedical Research and Health Care: A Literature Review. Biomed Inform Insights., (8), 1-10. doi: 10.4137/BII.S31559.

Jastania, R., Nageeti, T., Al-Juhani, H. et al. (2019). Utilizing Big Data in Healthcare, How to Maximize Its Value. Stud Health Technol Inform., 262(7), 356-359. doi: 10.3233/SHTI190092.

Adams, S., Petersen, C. (2016). Precision medicine: opportunities, possibilities, and challenges for patients and providers. J Am Med Inform Assoc., 23(4), 787-790. doi: 10.1093/jamia/ocv215.

Ioannidis, J., Khoury, M. (2018). Evidence-based medicine and big genomic data. Hum Mol Genet., 1(27), R2-R7. doi: 10.1093/hmg/ddy065.

Gruning, B., Lampa, S., Vaudel, M., Blankenberg, D. (2019). Software engineering for scientific big data analysis. Gigascience, 8(5), giz054. doi: 10.1093/ gigascience/giz054.

Aiello, M., Cavaliere, C., D'Albore, A., Salvatore, M. (2019). The Challenges of Diagnostic Imaging in the Era of Big Data. J Clin Med., 8(3), 316-327. doi: 10.3390/ jcm8030316.

Minou, J., Routsis, F., Gallos, P., Mantas, J. (2017). Health Informatics Scientists' Perception About Big Data Technology. Stud Health Technol Inform., 238(3), 144-146.

Alyass, A., Turcotte, M., Meyre, D. (2015). From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genomics, June, Article number: 33. doi: 10.1186/s12920-015-0108-y.

Navaz, A., Serhani, M., Al-Qirim, N., Gergely, M. (2018). Towards an efficient and Energy-Aware mobile big health data architecture. Comput Methods Programs Biomed., 166(11), 137-154. doi: 10.1016/j. cmpb.2018.10.008.

Prosperi, M., Min, J., Bian, J., Modave, F. (2018). Big data hurdles in precision medicine and precision public health. BMC Med Inform Decis Making., 18(1), Article number: 139. doi: 10.1186/s12911-018-0719-2.

Gligorijevic, V., Malod-Dognin, N., Przulj, N. (2016). Integrative methods for analyzing big data in precision medicine. Proteomics, 16(5), 741-758. doi: 10.1002/ pmic.201500396.

Dimitrov, D. (2016). Medical Internet of Things and Big Data in Healthcare. Healthc Inform Res., 22 (3), 156-163. doi: 10.4258/hir.2016.22.3.156.

Lejay, A., Chakfe, N. (2019). Big Data, a Big Mistake? Eur J Vasc Endovasc Surg., 57(2), 258-264. doi: 10.1016/j.ejvs.2018.09.029.

Succi, S., Coveney, P. (2019). Big data: the end of the scientific method? Philos Trans A Math Phys Eng Sci., 377(2142), 0145. doi: 10.1098/rsta.2018.0145.

Fahr, P., Buchanan, J., Wordsworth, S. (2019). Review of the Challenges of Using Biomedical Big Data for Economic Evaluations of Precision Medicine. Appl Health Econ Health Policy, Apr 3, 443-452. doi: 10.1007/s40258-019-00474-7.

Xu, L., Wang, S., Zhan, S. (2019). Randomized controlled trial based on big data. Zhonghua Liu Xing Bing Xue Za Zhi., 40(6), 702-706. doi: 10.3760/cma.j.i ssn.0254-6450.2019.06.019.

Chen, X., Hu, J. (2016). Big data analysis and evidence-based medicine: controversy or cooperation. Zhonghua Wei Chang Wai Ke Za Zhi., 19(1), 13-16.

Ross, M., Wei, W., Ohno-Machado, L. (2014). «Big data» and the electronic health record. Yearb Med Inform., 23(01), 97-104. doi: 10.15265/IY-2014-0003.

Zou, X., Zhu, W., Yang, L., Shu, Y. (2015). Google Flu Trends -- the initial application of big data in public health. Zhonghua Yu Fang Yi Xue Za Zhi., 49(6), 581584. Retrieved from: pubmed/26310351.

How to Cite
Petrov, V., Mintser, O. P., Kryuchyn, A. A., & Kryuchyna, Y. A. (2019). BIG DATA IN MEDICINE: PROMISE AND CHALLENGES. Medical Informatics and Engineering, (3), 20-30.