APPLICATION OF CYBERPHYSIC BIOSENSORS AND IMMUNOSENSORS SYSTEMS

Authors

  • V. P. Martsenyuk University of Bielsko-Biala, the Republic of Poland https://orcid.org/0000-0001-5622-1038
  • A. S. Sverstiuk SHEE I. Horbachevsky Ternopil State Medical University of the Ministry of Health of Ukraine
  • T. V. Bihunyak SHEE I. Horbachevsky Ternopil State Medical University of the Ministry of Health of Ukraine
  • A. V. Pavlyshyn SHEE I. Horbachevsky Ternopil State Medical University of the Ministry of Health of Ukraine
  • O. M. Mochulska SHEE I. Horbachevsky Ternopil State Medical University of the Ministry of Health of Ukraine

DOI:

https://doi.org/10.11603/mie.1996-1960.2019.1.10108

Keywords:

cyberphysical system, biosensor system, immunosensory system, portable system

Abstract

Background. The artical reviews the cyber-physical biosensor and immunosensory systems, which are the new generation of information-measuring systems with the use in the design of biological materials, which ensures their high selectivity. It is considered the following types of cyberphysical biosensory and immunosensory systems: electrochemical; optical on the basis of silicon oxide, quartz and glass; on the basis of nanomaterials; genetically coded or synthetic fluorescent; microbial, developed using synthetic biology and genetic engineering.

Materials and methods. It is carried out the classification of the studied systems for relatively sensitive elements and the possibility of using different modes of physico-chemical transformation of the measuring quantity.

Methods of manufacturing electrochemical cyberphysical biosensory and immunosensory methods are considered. Separately presented methods of manufacturing, by modifying the surface of metallic and carbon electrodes using biomaterials such as enzymes, antibodies or DNA.

Results. In the article, the studied systems are compared in terms of technology, specificity, detection threshold, analysis duration, cost and portability. Optical research systems, which realize their actions with the help of immobilizers and can be made of gold, carbon-based materials, quartz or glass, are presented. The most important directions of use of cyberphysical biosensor and immunosensory systems in clinics and diagnostic institutions are described, in particular, for monitoring of blood glucose levels in patients with diabetes, as well as for the development of new drugs, biopsy and biomedicine. It is labeled cyberphysical biosensor and immunosensory systems using genetic coding or synthetic fluorescence have been considered, which made it possible to study biological processes, including various molecular transformations within cells. The advantages of visualizing in vivo with the help of small molecule systems are described in order to better understand the cellular activity and mechanism of action of DNA, RNA and microRNA. Cellular biosensor and immunosensory systems that can be used to monitor the biochemical oxygen demand, environmental toxicity, to detect pesticides and heavy metals, and to monitor environmental efficiency in electricity generation are described.

Conclusions. The studied systems of silicon-based nanomaterials have the highest potential in terms of application for bivamisalizatsii, biosensor analysis and treatment of oncological diseases. The creation of high sensitive miniature devices requires the development of various micro and nano-cyberphysical biosensor and immunosensory platforms with the use of integrated technologies that use electrochemical or optical bioelectronic principles with a combination of biomolecules or biological materials, polymers and nanomaterials.

References

Mehrotra P. (2016). Biosensors and their applications - a review. Journal of Oral Biology and Craniofacial Research, vol. 6, no. 2, pp. 153-159. DOI: https://doi.org/10.1016/j.jobcr.2015.12.002

Jiang X., Spencer M. G. (2010). Electrochemical impedance biosensor with electrode pixels for precise counting of CD4+ cells: A microchip for quantitative diagnosis of HIV infec- tion status of AIDS patients. Biosensors and Bioelectronics, vol. 25, no. 7, p. 1622-1628. DOI: https://doi.org/10.1016/j.bios.2009.11.024

Luppa P. B., Sokoll L. J., Chan D. W. (2001). Immunosensors principles and applications to clinical chemistry. Clinica Chimica Acta, vol. 314, no. 1, p. 1-26. DOI: https://doi.org/10.1016/S0009-8981(01)00629-5

Lee E. A. (2008). Cyber physical systems: Design challenges. Center for Hybrid and Embedded Software Systems, EECS University of California, Berkeley, CA 94720, USA, Tech. Rep. UCB/EECS-2008-8. Available at: https://www2.eecs.berkeley.edu/Pubs/ TechRpts/2008/ EECS-2008-8.pdf.

Lee J., Bagheri B., Kao H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing system. Manufacturing Letters, vol. 3, p. 18-23, ISSN: 2213-8463. Available at: http://www.sciencedirect.com/science/ article/pii/ S221384631400025X.

Berger C., Hees A., Braunreuther S., and Reinhart G. (2016). Characterization of cyber-physical sensor system. Procedia CIRP, vol. 41, p. 638-643. Available at: https://doi.org/10.1016Zj.procir. 2015.12.019.

Martsenyuk V.P., Klos-Witkowska A., Sverstiuk A.S. (2018). Study of classification of immunosensors from viewpoint of medical tasks. Medical informatics and engineering. 1 (41). P. 13-19.

Martsenyuk V.P., Klos-Witkowska A., Sverstiuk A.S., Bihunyak T.V. (2018). On principles, methods and areas of medical and biological application of optical immunosensors. Medical informatics and engineering. 2 (42), p. 28-36.

Stability, bifurcation and transition to chaos in a model of immunosensor based on lattice differential equations with delay (2018). / V. Martsenyuk, A. Klos-Witkowska, A. Sverstiuk. Electronic Journal of Qualitative Theory of Differential Equations. no. 27, pp. 1-31. doi: 10.14232/ ejqtde. 2018.1.27. [Online]. Available: https://doi. org/10.14232/ ejqtde.2018.1.27.

On modelling predator-prey cellular automaton with help of lattice differential equations with time dilay (2018). / V. Martsenyuk, A. Klos-Witkowska, A. Sverstiuk, O. Bagrii-Zayats, M. Bernas. Advances in biotechnology. 18th International Multidisciplinary Scientific GeoConference SGEM 2018. Nano, bio, green and space technologies for a sustainable, 2th-8th of July, Albena, Bulgaria. V. 18, ISSUE 6.2, p.407-414.

Byely'x I.A., Kleshhev M.F. (2011). Navchal'nyj posibnyk „Biologichni ta ximichni sensorni systemy"". Xarkiv NTU «XPI», 143.

Turner, A. P. (2013). Biosensors: sense and sensibility. Chem. Soc. Rev. 42, 3184-3196. doi:10.1039/ c3cs35528d. DOI: https://doi.org/10.1039/c3cs35528d

Citartan, M., Gopinath, S. C., Tominaga, J., and Tang, T. H. (2013). Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst 138, 35763592. doi:10.1039/c3an36828a. DOI: https://doi.org/10.1039/c3an36828a

Sang, S., Wang, Y., Feng, Q., Wei, Y., Ji, J., and Zhang, W. (2015). Progress of new label-free techniques for biosensors: a review. Crit. Rev. Biotechnol. 15, 1-17. doi:10.3109/07388551.2014.991270. DOI: https://doi.org/10.3109/07388551.2014.991270

Vigneshvar S., Sudhakumari C. C., Senthilkumaran Balasubramanian, Prakash Hridayesh Recent Advances in Biosensor Technology for Potential Applications - An Overview Frontiers in Bioengineering and Biotechnology, Volume 4. 2016 P. 11. ISSN=2296-4185 DOI=10.3389/fbioe.2016.00011. DOI: https://doi.org/10.3389/fbioe.2016.00011

Clark, L. C. Jr., and Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29-45. doi:10.111 1/j.1749-6632.1962.tb13623.x DOI: https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

Harris, J. M., Reyes, C., and Lopez, G. P. (2013). Common causes of glucose oxidase instability in in vivo biosensing: a brief review. J. Diabetes Sci. Technol. 7, 1030-1038. DOI: https://doi.org/10.1177/193229681300700428

Wang, B., Takahashi, S., Du, X., and Anzai, J. (2014). Electrochemical biosensors based on ferroceneboronic

acid and its derivatives: a review. Biosensors (Basel) 4, 243-256. doi:10.3390/bios4030243. DOI: https://doi.org/10.3390/bios4030243

Gruhl, F. J., Rapp, B. E., and Lange, K. (2013). Biosensors for diagnostic applications. Adv. Biochem. Eng. Biotechnol. 133, 115-148. doi:10.1007/10_2011_130. DOI: https://doi.org/10.1007/10_2011_130

Guo, X. (2013). Single-molecule electrical biosensors based on single-walled carbon nanotubes. Adv. Mater. 25, 3397-3408. doi:10.1002/ adma.201301219. DOI: https://doi.org/10.1002/adma.201301219

Ogi, H. (2013). Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: a review. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 89, 401-417. doi:10.2183/pjab.89.401. DOI: https://doi.org/10.2183/pjab.89.401

Peng, F., Su, Y., Zhong, Y., Fan, C., Lee, S. T., and He, Y. (2014). Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 47, 612-623. doi:10.1021/ar400221g. DOI: https://doi.org/10.1021/ar400221g

Shen, M. Y., Li, B. R., and Li, Y. K. (2014). Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Biosens. Bioelectron. 60, 101-111. doi:10.1016/j.bios.2014.03.057. DOI: https://doi.org/10.1016/j.bios.2014.03.057

Schneider, E., and Clark, D. S. (2013). Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens. Bioelectron. 39, 1-13. doi:10.1016/j. bios.2012.05.043.

Dias, A. D., Kingsley, D. M., and Corr, D. T. (2014). Recent advances in bioprinting and applications for biosensing. Biosensors (Basel) 4, 111-136. doi:10.3390/ bios4020111. DOI: https://doi.org/10.3390/bios4020111

Khimji, I., Kelly, E. Y., Helwa, Y., Hoang, M., and Liu, J. (2013). Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods 64, 292-298. doi:10.1016/j.ymeth.2013.08.021. DOI: https://doi.org/10.1016/j.ymeth.2013.08.021

Kwon, S. J., and Bard, A. J. (2012). DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J. Am. Chem. Soc. 134, 10777-10779. doi:10.1021/ja304074f. DOI: https://doi.org/10.1021/ja304074f

Li, M., Li, R., Li, C. M., and Wu, N. (2011). Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review. Front. Biosci. (Schol Ed) 3:1308-1331. doi:10.2741/228. DOI: https://doi.org/10.2741/228

Zhou, Y., Chiu, C. W., and Liang, H. (2012). Interfacial structures and properties of organic materials for biosensors: an overview. Sensors (Basel) 12, 1503615062. doi:10.3390/s121115036. DOI: https://doi.org/10.3390/s121115036

Ko, P. J., Ishikawa, R., Sohn, H., and Sandhu, A. (2013). Porous silicon platform for optical detection of functionalized magnetic particles biosensing. J. Nanosci. Nanotechnol. 13, 2451-2460. doi:10.1166/ jnn.2013.7406. DOI: https://doi.org/10.1166/jnn.2013.7406

Senveli, S. U., and Tigli, O. (2013). Biosensors in the small scale: methods and technology trends. IET Nanobiotechnol. 7, 7-21. doi:10.1049/ iet-nbt.2012.0005. DOI: https://doi.org/10.1049/iet-nbt.2012.0005

Valentini, F., Galache, F. L., Tamburri, E., and Palleschi, G. (2013). Single walled carbon nanotubes/polypyrrole-GOx composite films to modify gold microelectrodes for glucose biosensors: study of the extended linearity. Biosens. Bioelectron. 43, 75-78. doi:10.1016/j. bios.2012.11.019.

Lamprecht, C., Hinterdorfer, P., and Ebner, A. (2014). Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert. Opin. Drug Deliv. 11, 1237-1253. doi:10.1517/17425 247.2014.917078.

Hutter, E., and Maysinger, D. (2013). Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol. Sci. 34, 497-507. doi:10.1016/j. tips.2013.07.002/

Su, L., Jia, W., Hou, C., and Lei, Y. (2011). Microbial biosensors: a review. Biosens. Bioelectron. 26, 17881799. doi:10.1016/j.bios.2010.09.005. DOI: https://doi.org/10.1016/j.bios.2010.09.005

Ding, L., Bond, A. M., Zhai, J., and Zhang, J. (2013). Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal. Chim. Acta 797, 1-12. doi:10.1016/j. aca.2013.07.035.

Nie, S., Xing, Y., Kim, G. J., and Simons, J. W. (2007). Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257-288. doi:10.1146/annurev. bioeng.9.060906.152025.

Jain, R. K. (2013). Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205-2218. doi:10.1200/ JCO.2012.46.3653. DOI: https://doi.org/10.1200/JCO.2012.46.3653

Kunzelmann, S., Solscheid, C., and Webb, M. R. (2014). Fluorescent biosensors: design and application to motor proteins. EXS 105, 25-47. doi:10.1007/978-3-0348-0856-9_2. DOI: https://doi.org/10.1007/978-3-0348-0856-9_2

Oldach, L., and Zhang, J. (2014). Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chem. Biol. 21, 186-197. doi:10.1016/j.chembiol.2013.12.012. DOI: https://doi.org/10.1016/j.chembiol.2013.12.012

Randriamampita, C., and Lellouch, A. C. (2014). Imaging early signaling events in T lymphocytes with fluorescent biosensors. Biotechnol. J. 9, 203-212. doi:10.1002/biot.201300195. DOI: https://doi.org/10.1002/biot.201300195

De, M. R., Carimi, F., and Frommer, W. B. (2014). Mitochondrial biosensors. Int. J. Biochem. Cell Biol. 48, 39-44. doi:10.1016/j.biocel.2013.12.014. DOI: https://doi.org/10.1016/j.biocel.2013.12.014

Su, T., Zhang, Z., and Luo, Q. (2012). Ratiometric fluorescence imaging of dual bio-molecular events in single living cells using a new FRET pair mVenus/ mKOkappa-based biosensor and a single fluorescent protein biosensor. Biosens. Bioelectron. 31, 292-298. doi:10.1016/j.bios.2011.10.034. DOI: https://doi.org/10.1016/j.bios.2011.10.034

Johnson, B. N., and Mutharasan, R. (2014). Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst 139, 1576-1588. doi:10.1039/c3an01677c. DOI: https://doi.org/10.1039/c3an01677c

Park, K., Jung, J., Son, J., Kim, S. H., and Chung, B. H. (2013). Anchoring foreign substances on live cell surfaces using Sortase A specific binding peptide. Chem. Commun. (Camb) 49, 9585-9587. doi:10.1039/ c3cc44753g. DOI: https://doi.org/10.1039/c3cc44753g

Du, Z., Li, H., and Gu, T. (2007). A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25, 464-482. doi:10.1016/j.biotechadv.2007.05.004. DOI: https://doi.org/10.1016/j.biotechadv.2007.05.004

Sun, J. Z., Peter, K. G., Si, R. W., Zhai, D. D., Liao, Z. H., Sun, D. Z., et al. (2015). Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci. Technol. 71, 801-809. doi:10.2166/wst.2015.035. DOI: https://doi.org/10.2166/wst.2015.035

Gutierrez, J. C., Amaro, F., and Martin-Gonzalez, A. (2015). Heavy metal wholecell biosensors using eukaryotic microorganisms: an updated critical review. Front. Microbiol. 6:48. doi:10.3389/fmicb.2015.00048. DOI: https://doi.org/10.3389/fmicb.2015.00048

Scheller, F. W., Yarman, A., Bachmann, T., Hirsch, T., Kubick, S., Renneberg, R., et al. (2014). Future of biosensors: a personal view. Adv. Biochem. Eng. Biotechnol. 140, 1-28. doi:10.1007/10_2013_251. DOI: https://doi.org/10.1007/10_2013_251

Wang, S., Poon, G. M., and Wilson, W. D. (2015). Quantitative investigation of protein-nucleic acid interactions by biosensor surface plasmon resonance. Methods Mol. Biol. 1334, 313-332. doi:10.1007/978-1-4939-2877-4_20. DOI: https://doi.org/10.1007/978-1-4939-2877-4_20

Published

2019-05-10

How to Cite

Martsenyuk, V. P., Sverstiuk, A. S., Bihunyak, T. V., Pavlyshyn, A. V., & Mochulska, O. M. (2019). APPLICATION OF CYBERPHYSIC BIOSENSORS AND IMMUNOSENSORS SYSTEMS. Medical Informatics and Engineering, (1), 25–38. https://doi.org/10.11603/mie.1996-1960.2019.1.10108

Issue

Section

Articles