ЕФЕКТИ БІОЛОГІЧНОЇ ДІЇ МОЛЕКУЛЯРНОГО ВОДНЮ

Автор(и)

  • О. О. Покотило ТЕРНОПІЛЬСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ ІМЕНІ І. Я. ГОРБАЧЕВСЬКОГО МОЗ УКРАЇНИ
  • О. С. Покотило ТЕРНОПІЛЬСЬКИЙ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ПУЛЮЯ
  • М. М. Корда ТЕРНОПІЛЬСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ ІМЕНІ І. Я. ГОРБАЧЕВСЬКОГО МОЗ УКРАЇНИ

DOI:

https://doi.org/10.11603/mcch.2410-681X.2023.i2.13980

Ключові слова:

молекулярний водень, воднева вода, оксидативний стрес, рак, антиоксиданти

Анотація

Вступ. У статті представлено огляд наукової літератури щодо впливу молекулярного водню, залежно від шляхів введення, на різні рівні організації організму при різних патологічних станах. Коротко подано історію відкриття молекулярного водню як біологічного агента і становлення водневої біомедицини. Охарактеризовано молекулярні, клітинні та системні аспекти біологічної дії молекулярного водню. Розкрито вплив молекулярного водню на різні пули клітин і процеси регенерації, його антиоксидантні та антиапоптичні ефекти. Описано протизапальну дію і регуляцію піроптозу молекулярним воднем. У цій статті інформацію проаналізовано з використанням баз даних PubMed, PubChem, ScienceDirect, Європейської Фармакопеї та наукової літератури.

Мета дослідження – проаналізувати наукову літературу і систематизувати інформацію щодо уявлень про природу та шляхи надходження молекулярного водню в організм, особливостей і механізмів його молекулярних, клітинних, органно-тканинних та системних біологічних ефектів.

Висновки. Молекулярний водень – найлегший і найпоширеніший медичний газ, який має широкий спектр біологічної активності й характеризується антиоксидантною, протизапальною та антиапоптичною діями. Він також бере участь у регуляції експресії численних генів, захисті біомакромолекул від окиснювального ушкодження, стимуляції виробництва енергії (АТФ) тощо. Водночас, незважаючи на різке збільшення кількості досліджень і публікацій щодо біомедичного застосування молекулярного водню, питання його використання як прорегенеративного агента потребує додаткового вивчення. Застосування даної молекули має численні переваги завдяки широкому спектру молекулярних реакцій, які вона викликає. Тому проведення цілеспрямованих досліджень у цій галузі може відкрити нові горизонти регенеративної медицини та створити інноваційну технологію прискореного відновлення організму.

Посилання

Ichihara, M., Sobue, S., Ito, M., Ito, M., Hi­rayama, M., et al (2015). Beneficial biological effects and the under­lying mechanisms of molecular hydrogen-comprehensive review of 321 original articles. Med. Gas Res., 5, 1-21. DOI: https://doi.org/10.1186/s13618-015-0035-1

Shen, M., Zhang, H., Yu, C., Wang, F., Sun, X. (2014). A review of experimental studies of hydrogen as a new therapeutic agent in emergency and critical care medicine. Med. Gas Res., 4, 17. DOI: https://doi.org/10.1186/2045-9912-4-17

Hirano, S.I., Ichikawa, Y., Kurokawa, R., Takefuji, Y., Satoh, F. (2020). A “philosophical molecule”, hydrogen may overcome senescence and intractable diseases. Med. Gas Res., 10, 47-49. DOI: https://doi.org/10.4103/2045-9912.279983

Tao, G., Song, G., Qin, S. (2019). Molecular hydrogen: Current knowledge on mechanism in alleviating free radical damage and diseases. Acta Biochim. Biophys. Sin., 51, 1189-1197. DOI: https://doi.org/10.1093/abbs/gmz121

Wang, L., Zhao, C., Wu, S., Xiao, G., Zhuge, X., et al. (2018). Hydrogen gas treatment improves the neurological outcome after traumatic brain injury via increasing miR-21 expression. Shock., 50, 308-315. DOI: https://doi.org/10.1097/SHK.0000000000001018

Wu, J., Wang, R., Yang, D., Tang, W., Chen, Z., et al. (2018). Hydrogen postconditioning promotes survival of rat retinal ganglion cells against ischemia/reperfusion injury through the PI3K. Akt pathway. Bio­chem. Biophys. Res. Commun., 495, 2462-2468. DOI: https://doi.org/10.1016/j.bbrc.2017.12.146

Hirano, S.-I., Ichikawa, Y., Sato, B., Yamamoto, H., Takefuji, Y., et al. (2021). Molecular Hydrogen as a Potential Clinically Applicable Radioprotective Agent. Int. J. Mol. Sci., 22, 4566. DOI: https://doi.org/10.3390/ijms22094566

Hu, Q., Zhou, Y., Wu, S., Wu, W., Deng, Y., et al. (2020). Molecular hydrogen: A potential radioprotective agent. Biomed. Pharmacother., 130 , 110589. DOI: https://doi.org/10.1016/j.biopha.2020.110589

Runtuwene, J., Amitani, H., Amitani, M., Asaka­wa, A., Cheng, K.C., et al. (2015). Hydrogen-water enhances 5-fluorouracil-induced inhibition of colon cancer. PeerJ., 3 , 859. DOI: https://doi.org/10.7717/peerj.859

Hirano, S.-I., Yamamoto, H., Ichikawa, Y., Sato, B., Takefuji, Y., [et al] (2021). Molecular Hydrogen as a Novel Antitumor Agent: Possible Mechanisms Underlying Gene Expression. Int. J. Mol. Sci., 22, 8724. DOI: https://doi.org/10.3390/ijms22168724

Wang, D., Wang, L., Zhang, Y., Zhao, Y., Chen, G. (2018). Hydrogen gas inhibits lung cancer progression through targeting SMC. Biomed. Pharmacol., 104, 788–797.

Boyle, R. Tracts written by the honourable Robert Boyle Containing New Experiments Touching the Relation Betwixt Flame And Air: And About Explosions: An Hydrostatical Discourse Occasion’d by Some Objec­tions of Dr. Henry More Against Some Explications of New Experiments Made by the Author of these Tracts: To Which is Annex’t, an Hydrostatical Letter, Dilucidating an Experiment about a Way of Weighing Water in Water; Printed for Richard Davis, Book-Seller in Oxon. 1672. Accessmode:https://quod.lib.umich.edu/e/eebo2/A29057.0001.001/1:21.1?rgn=div2;view=fulltext (accessed on 22 January 2023).

Cavendish, H. XIX. (1766). Three papers, containing experiments on factitious air. Phil. Trans. R. Soc., 56, 141-184. DOI: https://doi.org/10.1098/rstl.1766.0019

Beddoes, T. (1793). A Letter to Erasmus Darwin, M.D. On A New Method of Treating Pulmonary Consumption, and Some Other Diseases Hitherto Found Incurable; Bulgin & Rosser: Bristol, UK.

Beddoes, T. (1796). Considerations on the Medicinal Use, and on the Production of Factitious Airs. Ann. Med., 1, 245-265.

Levitt, M.D. (1969). Production and excretion of hydrogen gas in man. N. Engl. J. Med., 281, 122-127. DOI: https://doi.org/10.1056/NEJM196907172810303

Dole, M., Wilson, F.R., Fife, W.P. (1975). Hyper­baric hydrogen therapy: A possible treatment for cancer. Science., 190 , 152-154. DOI: https://doi.org/10.1126/science.1166304

Lanphier, E.H. (1972). Human respiration under increased pressures. Symp. Soc. Exp. Biol., 26, 379-394.

Van Haaster, D.J., Hagedoorn, P.L., Jongejan, J.A., Hagen, W.R. (2005). On the relationship between affinity for molecular hydrogen and the physiological directio­na­lity of hydrogenases. Biochem. Soc. Trans., 33, Pt 1, 12-14. DOI: https://doi.org/10.1042/BST0330012

Yanagihara, T., Arai, K., Miyamae, K., Sato, B., Shudo, T., et al. (2005). Electrolyzed Hydrogen-Saturated Water for Drinking Use Elicits an Antioxidative Effect: A Feeding Test with Rats. Biosci. Biotechnol. Biochem., 69, 1985-1987. DOI: https://doi.org/10.1271/bbb.69.1985

Ohsawa, I., Ishikawa, M., Takahashi, K., Wata­nabe, M., Nishimaki, K., et al. (2007). Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med., 13 , 688-694. DOI: https://doi.org/10.1038/nm1577

Guan, W.J., Chen, R.C., Zhong, N.S. (2020). Stra­tegies for the prevention and management of coro­navirus disease 2019. Eur. Respir. J., 55 , 2000597. DOI: https://doi.org/10.1183/13993003.00597-2020

Tian, Y., Zhang, Y., Wang, Y., Chen, Y., Fan, W., et al. (2021). Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis. Front. Physiol., 12, 789507. DOI: https://doi.org/10.3389/fphys.2021.789507

Fu, Z., Zhang, J. (2022). Molecular hydrogen is a promising therapeutic agent for pulmonary disease. J. Zhejiang Univ. Sci. B., 23, 102-122. DOI: https://doi.org/10.1631/jzus.B2100420

Guan, W.J., Wei, C.H., Chen, A.L., Sun, X.C., Guo, G.Y., et al. (2020). Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multi­center, open-label clinical trial. J. Thorac. Dis., 12, 3448-3452. DOI: https://doi.org/10.21037/jtd-2020-057

Liu, X., Ma, C., Wang, X., Wang, W., Li, Z., et al. (2017). Hydrogen coadministration slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Int. J. Chron. Obstruct. Pulmon. Dis., 12, 1309-1324. DOI: https://doi.org/10.2147/COPD.S124547

Zheng, Z.G., Sun, W.Z., Hu, J.Y., Jie, Z.J., Xu, J.F., et al. (2021). Hydrogen/oxygen therapy for the treatment of an acute exacerbation of chronic obstructive pulmonary disease: Results of a multicenter, randomized, double-blind, parallel-group controlled trial. Respir. Res., 22, 149. DOI: https://doi.org/10.1186/s12931-021-01740-w

Huang, P., Wei, S., Huang, W., Wu, P., Chen, S., et al. (2019). Hydrogen gas inhalation enhances alveolar macrophage phagocytosis in an ovalbumin-induced asthma model. Int. Immunopharmacol., 74, 105646. DOI: https://doi.org/10.1016/j.intimp.2019.05.031

LeBaron, T.W., Kura, B., Kalocayova, B., Tribu­lova, N., Slezak, J. (2019). A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules, 24, 2076. DOI: https://doi.org/10.3390/molecules24112076

Cole, A.R., Sperotto, F., DiNardo, J.A., Carlisle, S., Rivkin, M.J., et al. (2021). Safety of prolonged inhalation of hydrogen gas in air in healthy adults. Crit. Care Explor., 3, e543. DOI: https://doi.org/10.1097/CCE.0000000000000543

Asada, R., Tazawa, K., Sato, S., Miwa, N. (2020). Effects of hydrogen-rich water prepared by alternating-current-electrolysis on antioxidant activity, DNA oxidative injuries, and diabetes related markers. Med. Gas Res., 10, 114-121. DOI: https://doi.org/10.4103/2045-9912.296041

Shimouchi, A., Nose, K., Shirai, M., Kondo, T. (2012). Estimation of molecular hydrogen consumption in the human whole body after the ingestion of hydrogen-rich water. Adv. Exp. Med. Biol., 737, 245-250. DOI: https://doi.org/10.1007/978-1-4614-1566-4_36

Liu, C., Kurokawa, R., Fujino, M., Hirano, S., Sato, B., et al. (2014). Estimation of the hydrogen con­centration in rat tissue using an airtight tube following the administration of hydrogen via various routes. Sci. Rep., 4, 5485. DOI: https://doi.org/10.1038/srep05485

Kawamura, M., Imamura, R., Kobayashi, Y., Ta­niguchi, A., Nakazawa, S., [et al.] (2020). Oral admi­nistration of Si-based agent attenuates oxidative stress and ischemia-reperfusion injury in a rat model: A novel hydrogen administration method. Front. Med., 7, 95. DOI: https://doi.org/10.3389/fmed.2020.00095

Zhao, P.H., Jin, Z.K., Chen, Q., Meng, J., Lu, X., (2018). Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun., 9, 4241. DOI: https://doi.org/10.1038/s41467-018-06630-2

Kou, Z., Zhao, P.H., Wang, Z.H., Jin, Z., Chen, L., et al. (2019). Acid-responsive H2-releasing Fe nanopar­ticles for safe and effective cancer therapy. J. Mater. Chem. B., 7, 2759-2765. DOI: https://doi.org/10.1039/C9TB00338J

He, Y., Zhang, B., Chen, Y., Jin, Q., Wu, J. [et al] (2017). Image-guided hydrogen gas delivery for protection from myocardial ischemia-reperfusion injury via micro­bubbles. ACS Appl. Mater. Interfaces, 9, 21190-21199. DOI: https://doi.org/10.1021/acsami.7b05346

Katiukhin, L.N. (2016). Influence of the course of treatment by injections of ozonized saline on rheological properties of erythrocytes in patients with complex pathology. Hum. Physiol., 42, 672-677. DOI: https://doi.org/10.1134/S0362119716050091

Martusevich, A.K., Peretyagin, S.P., Ruchin, M.V., Struchkov, A.A. (2018). Ozone Therapy in Patients with Burn Disease. J. Biomed. Sci. Eng., 11, 27-35. DOI: https://doi.org/10.4236/jbise.2018.112003

Martínez-Sánchez, G., Schwartz, A., Di Donna, V. (2020). Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/COVID-19. Antioxidants., 9, 389. DOI: https://doi.org/10.3390/antiox9050389

Zhu, Q., Wu, Y., Li, Y., Chen, Z., Wang, L., et al. (2018). Positive effects of hydrogen-water bathing in patients of psoriasis and parapsoriasis en plaques. Sci. Rep., 8 , 8051. DOI: https://doi.org/10.1038/s41598-018-26388-3

Asada, R., Saitoh, Y., Miwa, N. (2019). Effects of hydrogen-rich water bath on visceral fat and skin blotch, with boiling-resistant hydrogen bubbles. Med. Gas Res., 9, 68-73. DOI: https://doi.org/10.4103/2045-9912.260647

Oharazawa, H., Igarashi, T., Yokota, T., Fujii, H., Suzuki, H., [et al] (2010). Protection of the retina by rapid diffusion of hydrogen: Administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Invest. Ophthalmol. Vis. Sci., 51, 487-492. DOI: https://doi.org/10.1167/iovs.09-4089

Zhai, X., Chen, X., Shi, J., Shi, D., Ye, Z. [et al.] (2013). Lactulose ameliorates cerebral ischemia-reper­fusion injury in rats by inducing hydrogen by activating Nrf2 expression. Free Radic. Biol. Med., 65, 731-741. DOI: https://doi.org/10.1016/j.freeradbiomed.2013.08.004

Zhang, M., Xu, Y., Zhang, J., Sun, Z., Ban, Y., et al. (2021). Application of methane and hydrogen-based breath test in the study of gestational diabetes mellitus and intestinal microbes. Diabetes Res. Clin. Pract., 176, 108818. DOI: https://doi.org/10.1016/j.diabres.2021.108818

Jahng, J., Jung, I.S., Choi, E.J., Conklin, J.L., Park, H. (2012). The effects of methane and hydrogen gases produced by enteric bacteria on ileal motility and colonic transit time. Neurogastroenterol. Motil., 24, 185-e92. DOI: https://doi.org/10.1111/j.1365-2982.2011.01819.x

Ge, L., Qi, J., Shao, B., Ruan, Z., Ren, Y., et al. (2022). Microbial hydrogen economy alleviates colitis by reprogramming colonocyte metabolism and reinforcing intestinal barrier. Gut Microbes., 14, 2013764. DOI: https://doi.org/10.1080/19490976.2021.2013764

Li, Q., Kato, S., Matsuoka, D., Tanaka, H., Miwa, N. (2013). Hydrogen water intake via tube- feeding for patients with pressure ulcer and its reconstructive effects on normal human skin cells in vitro. Med. Gas Res., 3, 20. DOI: https://doi.org/10.1186/2045-9912-3-20

Cui, Y., Zhang, H., Ji, M., Jia, M., Chen, H., et al. (2014). Hydrogen-rich saline attenuates neuronal ische­mia-reperfusion injury by protecting mitochondrial function in rats. J. Surg. Res., 192, 564-572. DOI: https://doi.org/10.1016/j.jss.2014.05.060

Ostojic, S.M. (2015). Molecular Hydrogen in Sports Medicine: New Therapeutic Perspectives. Int. J. Sports Med., 36, 273-279. DOI: https://doi.org/10.1055/s-0034-1395509

Noda, K., Shigemura, N., Tanaka, Y., Kawamu­ra, T., Hyun Lim, S., [et al] (2013). A novel method of preserving cardiac grafts using a hydrogen-rich water bath. J. Heart Lung Transpl., 32, 241-250. DOI: https://doi.org/10.1016/j.healun.2012.11.004

Sano, M., Ichihara, G., Katsumata, Y., Hiraide, T., Hirai, A., [et al] (2020). Pharmacokinetics of a single inhalation of hydrogen gas in pigs. PLoS ONE, 15, e0234626. DOI: https://doi.org/10.1371/journal.pone.0234626

Sobue, S., Yamai, K., Ito, M., Ohno, K., Iwamoto T. (2015). Simultaneous oral and inhalational intake of molecular hydrogen additively suppresses signaling pathways in rodents. Mol. Cell Biochem. , 403 , 231-241. DOI: https://doi.org/10.1007/s11010-015-2353-y

Genestra, M. (2007). Oxyl radicals, redox-sen­sitive signalling cascades and antioxidants. Cell Signal., 19, 1807-1819. DOI: https://doi.org/10.1016/j.cellsig.2007.04.009

Sies, H. (2015). Oxidative stress: A concept in redox biology and medicine. Redox Biol., 4, 180-183. DOI: https://doi.org/10.1016/j.redox.2015.01.002

Dan Dunn, J., Alvarez, L.A., Zhang, X., Soldati, T. (2015). Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol., 6, 472-485. DOI: https://doi.org/10.1016/j.redox.2015.09.005

Liu, Y., Fiskum, G., Schubert, D. (2002). Genera­tion of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem., 80, 780-787. DOI: https://doi.org/10.1046/j.0022-3042.2002.00744.x

Halliwell, B., Gutteridge, J. (2015). Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK. DOI: https://doi.org/10.1093/acprof:oso/9780198717478.001.0001

Grassi, D., Desideri, G., Ferri, L., Aggio, A., Tiberti S., [et al] (2010). Oxidative stress and endothelial dysfunction: Say no to cigarette smoking! Curr. Pharm. Des., 16, 2539-2550. DOI: https://doi.org/10.2174/138161210792062867

Harma, M.I., Harma, M., Erel, O. (2006). Measu­ring plasma oxidative stress biomarkers in sport medicine. Eur. J. Appl. Physiol., 97, 505-508. DOI: https://doi.org/10.1007/s00421-006-0202-0

Kim, Y.W., Byzova, T.V. (2014). Oxidative stress in angiogenesis and vascular disease. Blood, 123, 625-631. DOI: https://doi.org/10.1182/blood-2013-09-512749

Tanriverdi, H., Evrengul, H., Kuru, O.,Tanriverdi, S., Seleci, D., Enli, Y., Kaftan, A.H., Kilic, M. (2006). Cigarette smoking induced oxidative stress may impair endothelial function and coronary blood flow in angiographically normal coronary arteries. Circ. J., 70, 593-599. DOI: https://doi.org/10.1253/circj.70.593

Burton, G.J., Jauniaux, E. (2011). Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol., 25, 287-299. DOI: https://doi.org/10.1016/j.bpobgyn.2010.10.016

Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H.J., Nagano, T. (2003). Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem., 278, 3170-3175. DOI: https://doi.org/10.1074/jbc.M209264200

Ohta, S. (2014). Molecular hydrogen as a pre­ventive and therapeutic medical gas: Initiation, deve­lopment and potential of hydrogen medicine. Pharmacol. Ther., 144, 1-11. DOI: https://doi.org/10.1016/j.pharmthera.2014.04.006

Ohta, S. (2015). Molecular hydrogen as a novel antioxidant: Overview of the advantages of hydrogen for medical applications. Methods Enzymol., 555, 289-317. DOI: https://doi.org/10.1016/bs.mie.2014.11.038

Gharib, B., Hanna, S., Abdallahi, O.M., Lepidi, H., Gardette, B., et al. (2001). Anti-inflammatory properties of molecular hydrogen: Investigation on parasite-induced liver inflammation. Comptes Rendus Acad. Sci. III, 324, 719-724. DOI: https://doi.org/10.1016/S0764-4469(01)01350-6

Zhang, H.Q., Davies, K.J.A., Forman, H.J. (2015). Oxidative stress response and Nrf2 signaling in aging. Free Radic. Biol. Med., 88, 314-336. DOI: https://doi.org/10.1016/j.freeradbiomed.2015.05.036

Xie, K.L., Zhang, Y., Wang, Y.Q., Meng, X., Wang, Y., et al. (2020). Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation. Inflamm. Res., 69, 697-710. DOI: https://doi.org/10.1007/s00011-020-01347-9

Yu, Y., Yang, Y.Y., Yang, M., Wang, C., Xie, K., et al. (2019). Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2/ HO-1-dependent pathway. Int. Immunopharmacol., 69, 11-18. DOI: https://doi.org/10.1016/j.intimp.2019.01.022

Cai, W.W., Zhang, M.H., Yu, Y.S., Cai, J.H. (2013). Treatment with hydrogen molecule alleviates TNFα-induced cell injury in osteoblast. Mol. Cell. Biochem., 373, 1-9. DOI: https://doi.org/10.1007/s11010-012-1450-4

Shinbo, T., Kokubo, K., Sato, Y., Hagiri, S., Hataishi, R., et al. (2013). Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am. J. Physiol. Circ. Physiol., 305, 542-550. DOI: https://doi.org/10.1152/ajpheart.00844.2012

Forrester, S.J., Kikuchi, D.S., Hernandes, M.S., Xu, Q., et al. (2018). Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res., 122 , 877-902. DOI: https://doi.org/10.1161/CIRCRESAHA.117.311401

Rimessi, A., Previati, M., Nigro, F., Wieckow­ski, M.R., Pinton, P. (2016). Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. Int. J. Biochem. Cell Biol., 81 Pt B, 281-293. DOI: https://doi.org/10.1016/j.biocel.2016.06.015

Chen, M., Zhang, J., Chen, Y., Qiu, Y., Luo, Z., et al. (2018). Hydrogen protects lung from hypoxia/re-oxy­genation injury by reducing hydroxyl radical pro­duction and inhibiting inflammatory responses. Sci. Rep., 8, 8004. DOI: https://doi.org/10.1038/s41598-018-26335-2

Zhao, S., Mei, K., Qian, L., Yang, Y., Liu, W., et al. (2013). Therapeutic effects of hydrogen-rich solution on aplastic anemia in vivo. Cell. Physiol. Biochem., 32, 549-560. DOI: https://doi.org/10.1159/000354459

Wang, X., Yu, P., Yang, Y., Liu, X., Jiang, J., et al. (2015). Hydrogen-rich saline resuscitation alleviates inflammation induced by severe burn with delayed resuscitation. Burns, 41, 379-385. DOI: https://doi.org/10.1016/j.burns.2014.07.012

Schulze-Osthoff, K., Los, M., Baeuerle, P.A. (1995). Redox signalling by transcription factors NF-κB and AP-1 in lymphocytes. Biochem. Pharmacol., 50, 735-741. DOI: https://doi.org/10.1016/0006-2952(95)02011-Z

Shao, A., Wu, H., Hong, Yu., Tu, S., Sun, X., et al. (2016). Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: Possible involvement of NF-κB pathway and NLRP3 inflammasome. Mol. Neurobiol., 53, 3462-3476. DOI: https://doi.org/10.1007/s12035-015-9242-y

Zhang, G., Li, Z., Meng, C., Kang, J., Zhang, M. et al. (2018). The anti-inflammatory effect of hydrogen on lung transplantation model of pulmonary microvascular endothelial cells during cold storage period. Trans­plantation, 102, 1253-1261. DOI: https://doi.org/10.1097/TP.0000000000002276

Radyuk, S.N. (2021). Mechanisms Underlying the Biological Effects of Molecular Hydrogen. Curr. Pharm. Des., 27, 626-735. DOI: https://doi.org/10.2174/1381612826666201211112846

Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicol. Pathol., 35, 495-516. DOI: https://doi.org/10.1080/01926230701320337

Singh, R., Letai, A., Sarosiek, K. (2019). Regu­lation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 20, 175-193. DOI: https://doi.org/10.1038/s41580-018-0089-8

Shalini, S., Dorstyn, L., Dawar, S., Kumar, S. (2015). Old, new and emerging functions of caspases. Cell Death Differ., 22, 526-539. DOI: https://doi.org/10.1038/cdd.2014.216

Westphal, D., Kluck, R.M., Dewson, G. (2014). Building blocks of the apoptotic pore: How Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ., 21, 196-205. DOI: https://doi.org/10.1038/cdd.2013.139

Chen, K., Wang, N., Diao, Y., Dong, W., Sun, Y., [et al.] (2017). Hydrogen-rich saline attenuates brain injury induced by cardiopulmonary bypass and inhibits microvascular endothelial cell apoptosis via the PI3K/Akt/GSK3β signaling pathway in rats. Cell. Physiol. Biochem., 43, 1634-1647. DOI: https://doi.org/10.1159/000484024

Liu, Y.Q., Liu, Y.F., Ma, X.M., Xiao, Y.D., Wang, Y.B., et al. (2015). Hydrogen-rich saline attenuates skin ischemia/reperfusion induced apoptosis via regu­lating Bax/Bcl-2 ratio and ASK-1/JNK pathway. J. Plast. Reconstr. Aesthetic Surg., 68, 147-156. DOI: https://doi.org/10.1016/j.bjps.2015.03.001

Mo, X.Y., Li, X.M., She, C.S., Lu, X.Q., Xiao, C.G., [et al.] (2019). Hydrogen-rich saline protects rat from oxy­gen glucose deprivation and reperfusion-induced apopto­sis through VDAC1 via Bcl-2. Brain Res., 1706, 110-115. DOI: https://doi.org/10.1016/j.brainres.2018.09.037

Li, J., Hong, Z.J., Liu, H., Zhou, J., Cui, L., et al. (2016). Hydrogen-rich saline promotes the recovery of renal function after ischemia/ reperfusion injury in rats via anti-apoptosis and anti-inflammation. Front. Pharmacol., 7, 106. DOI: https://doi.org/10.3389/fphar.2016.00106

Jiao, Y., Yu, Y., Li, B., Gu, X., Xie, K., et al. (2020). Protective effects of hydrogen-rich saline against experi­mental diabetic peripheral neuro-pathy via activation of the mitochondrial ATP-sensitive potassium channel channels in rats. Mol. Med. Rep., 21, 282-290. DOI: https://doi.org/10.3892/mmr.2019.10795

Yang, Y., Liu, P.Y., Bao, W., Chen, S.J., Wu, F.S., [et al] (2020). Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer, 20, 28. DOI: https://doi.org/10.1186/s12885-019-6491-6

, J.J., Gao, W.Q., Shao, F. (2017). Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 42, 245-254. DOI: https://doi.org/10.1016/j.tibs.2016.10.004

Zha, Q.B., Wei, H.X., Li, C.G., Liang, Y.D., Xu, L.H., et al. (2016).ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Front. Immunol., 7, 597. DOI: https://doi.org/10.3389/fimmu.2016.00597

Nie, C., Ding, X.A.R., Zheng, M., Li, Z., Pan, S., et al. (2021). Hydrogen gas inhalation alleviates myo­cardial ischemia-reperfusion injury by the inhibition of oxidative stress and NLRP3-mediated pyrop- tosis in rats. Life Sci., 272 , 119248. DOI: https://doi.org/10.1016/j.lfs.2021.119248

Yang, Z.F., Klionsky, D.J. (2010). Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol., 22, 124-131. DOI: https://doi.org/10.1016/j.ceb.2009.11.014

Maiuri, M.C., Zalckvar, E., Kimchi, A., Kroemer, G. (2007). Self-eating and self-killing: Crosstalk between autophagy and apop-tosis. Nat. Rev. Mol. Cell Biol., 8, 741-752. DOI: https://doi.org/10.1038/nrm2239

Chen, H., Mao, X., Meng, X., Li, Y., Feng, J., et al. (2019). Hydrogen alleviates mitochondrial dysfunction and organ damage via autophagy-mediated NLRP3 inflammasome inactivation in sepsis. Int. J. Mol. Med., 44, 1309-1324. DOI: https://doi.org/10.3892/ijmm.2019.4311

Wang, Y., Wang, L., Hu, T., Wang, F., Han, Z., et al. (2020). Hydrogen improves cell viability partly through inhibition of autophagy and activation of PI3K/Akt/GSK3β signal pathway in a micro-vascular endo­thelial cell model of traumatic brain injury. Neurol. Res., 42, 487-496. DOI: https://doi.org/10.1080/01616412.2020.1747717

Adzavon, Y.M., Xie, F., Yi, Y., Jiang, X., Zhang, X., et al. (2022). Long-term and daily use of molecular hydrogen induces reprogramming of liver metabolism in rats by modulating NADP/NADPH redox pathways. Sci. Rep., 12 , 3904. DOI: https://doi.org/10.1038/s41598-022-07710-6

Kawasaki, H., Guan, J., Tamama, K. (2010). Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials. Biochem. Biophys. Res. Commun., 397, 608-613. DOI: https://doi.org/10.1016/j.bbrc.2010.06.009

Hasegawa, T., Ito, M., Hasegawa, S., Terani­shi, M., Takeda, K., et al. (2022). Molecular Hydrogen Enhances Proliferation of Cancer Cells That Exhibit Potent Mitochondrial Unfolded Protein Response. Int. J. Mol. Sci., 23, 2888. DOI: https://doi.org/10.3390/ijms23052888

Fiorese, C.J., Schulz, A.M., Lin, Y.F., Rosin, N., Pellegrino, M.W., et al. (2016). The Transcription Factor ATF5 Mediates a Mammalian Mitochondrial UPR. Curr. Biol., 26, 2037-2043. DOI: https://doi.org/10.1016/j.cub.2016.06.002

Wu, Z., Senchuk, M.M., Dues, D.J., John­son, B.K., Cooper, J.F., et al. (2018). Mitochondrial unfol­ded protein response transcription factor ATFS-1 pro­motes longevity in a long-lived mitochondrial mutant through activation of stress response pathways. BMC Biol., 16, 147. DOI: https://doi.org/10.1186/s12915-018-0615-3

Lin, Y.F., Haynes, C.M. (2016). Metabolism and the UPR(mt). Mol. Cell., 61, 677-682. DOI: https://doi.org/10.1016/j.molcel.2016.02.004

Zhao, Y.S., An, J.R., Yang, S., Guan, P., Yu, F.Y., et al. (2019). Hydrogen and Oxygen Mixture to Improve Cardiac Dysfunction and Myocardial Pathological Changes Induced by Intermittent Hypoxia in Rats. Oxidative Med. Cell. Longev., 7415212. DOI: https://doi.org/10.1155/2019/7415212

Wang, Y.T., Lim, Y., McCall, M.N., Huang, K.T., Haynes, C.M., et al. (2019).Cardioprotection by the mitochondrial unfolded protein response requires ATF. Am. J. Physiol. Heart Circ. Physiol., 317, H472-H478. DOI: https://doi.org/10.1152/ajpheart.00244.2019

Berger, E., Rath, E., Yuan, D., Waldschmitt, N., Khaloian, S., et al. (2016). Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat. Commun., 7, 13171. DOI: https://doi.org/10.1038/ncomms13171

Liu, M.-Y., Xie, F., Zhang, Y., Wang, T.-T., Ma, S.-N., [et al.] (2019). Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell diffe­rentiation. Stem Cell Res. Ther., 10, 145. DOI: https://doi.org/10.1186/s13287-019-1241-x

Fang, W., Wang, G., Tang, L., Su, H., Chen, H., et al. (2018). Hydrogen gas inhalation protects against cutaneous ischaemia/reperfusion injury in a mouse model of pressure ulcer. J. Cell. Mol. Med., 22, 4243-4252. DOI: https://doi.org/10.1111/jcmm.13704

Buchholz, B.M., Masutani, K., Kawamura, T., Peng, X., Toyoda, Y., et al. (2011). Hydrogen-enriched preservation protects the isogeneic intestinal graft and amends recipient gastric function during transplantation. Transplantation, 92, 985-992. DOI: https://doi.org/10.1097/TP.0b013e318230159d

Deng, L., Du, C., Song, P., Chen, T., Rui, S., et al. (2021). The Role of Oxidative Stress and Antioxi­dants in Diabetic Wound Healing. Oxidative Med. Cell. Longev., 2021, 8852759. DOI: https://doi.org/10.1155/2021/8852759

Lin, T.-K., Zhong, L., Santiago, J.L. (2017). Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci., 19, 70. DOI: https://doi.org/10.3390/ijms19010070

Litwiniuk, M., Krejner, A., Speyrer, M.S., Gauto, A.R., Grzela, T. (2016). Hyaluronic Acid in Inflam­mation and Tissue Regeneration. Wounds, 28, 78-88.

Werner, S., Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiol. Rev., 83, 835-870. DOI: https://doi.org/10.1152/physrev.2003.83.3.835

Dohi, K., Kraemer, B.C., Erickson, M.A., McMil­lan, P.J., Kovac, A., [et al.] (2014). Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury. PLoS ONE, 9, 108034. DOI: https://doi.org/10.1371/journal.pone.0108034

Noda, K., Tanaka, Y., Shigemura, N., Kawamu­ra, T., Wang, Y., et al. (2012). Hydrogen-supplemented drinking water protects cardiac allografts from inflam­mation-associated deterioration. Transpl. Int., 25, 1213-1222. DOI: https://doi.org/10.1111/j.1432-2277.2012.01542.x

Pokotylo O., Zakharchuk I., Vykhovanets B. (2020). State and prospects of using molecular hydrogen for athletes. Sportyvnyi visnyk Prydniprovia, 1, 443-450 [in Ukrainian]. DOI: https://doi.org/10.32540/2071-1476-2019-1-443

Pokotylo, O.S., Holovach, P.I., Pokotylo, S.O. (2019). Study of patterns of formation of electron-donating water based on changes in pH and ORP of water in thermoses-ionizers-generators "Living Water". Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka. Ser. Biolohiia. Ternopil: TNPU im. V. Hnatiuka, 4 (78), 24-29 [in Ukrainian]. DOI: https://doi.org/10.25128/2078-2357.19.4.4

Xiao, L., Miwa, N. (2017). Hydrogen-rich water achieves cytoprotection from oxidative stress injury in human gingival fibroblasts in culture or 3D-tissue equi­valents, and wound-healing promotion, together with ROS-scavenging and relief from glutathione diminishment. Hum Cell. Apr., 30 (2), 72-87. DOI: https://doi.org/10.1007/s13577-016-0150-x

Chu, J., Gao, J., Wang, J. (2021). Mechanism of hydrogen on cervical cancer suppression revealed by high throughput RNA sequencing. Oncol Rep., 46, 141. DOI: https://doi.org/10.3892/or.2021.8092

Kawai, D., Takaki, A., Nakatsuka, A. (2012). Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology., 56, 912-921. DOI: https://doi.org/10.1002/hep.25782

Wang D., Wang L., Zhang Y., Zhao Y., Chen G. (2018). Hydrogen gas inhibits lung cancer progression through targeting SMC3. Biomed Pharmacother., 104, 788-797. DOI: https://doi.org/10.1016/j.biopha.2018.05.055

Jiang, Y., Liu, G., Zhang, L. et al. (2018). Therapeutic efficacy of hydrogen rich saline alone and in combination with PI3K inhibitor in non small cell lung cancer. Mol. Med. Rep., 18, 2182-2190. DOI: https://doi.org/10.3892/mmr.2018.9168

Chen, J.B., Lu, Y.Y., Xu, K.C. (2020). A narrative review of hydrogen oncology: from real world survey to real world evidence. Med Gas Res., 10, 130. DOI: https://doi.org/10.4103/2045-9912.296044

Madsen, C.D., Sahai, E. (2010). Cancer dissemination – Lessons from leukocytes. Dev Cell., 19, 13-26. DOI: https://doi.org/10.1016/j.devcel.2010.06.013

##submission.downloads##

Опубліковано

2023-07-11

Як цитувати

Покотило, О. О., Покотило, О. С., & Корда, М. М. (2023). ЕФЕКТИ БІОЛОГІЧНОЇ ДІЇ МОЛЕКУЛЯРНОГО ВОДНЮ. Медична та клінічна хімія, (2), 102–121. https://doi.org/10.11603/mcch.2410-681X.2023.i2.13980

Номер

Розділ

ОРИГІНАЛЬНІ ДОСЛІДЖЕННЯ