ЕФЕКТИ БІОЛОГІЧНОЇ ДІЇ МОЛЕКУЛЯРНОГО ВОДНЮ
DOI:
https://doi.org/10.11603/mcch.2410-681X.2023.i2.13980Ключові слова:
молекулярний водень, воднева вода, оксидативний стрес, рак, антиоксидантиАнотація
Вступ. У статті представлено огляд наукової літератури щодо впливу молекулярного водню, залежно від шляхів введення, на різні рівні організації організму при різних патологічних станах. Коротко подано історію відкриття молекулярного водню як біологічного агента і становлення водневої біомедицини. Охарактеризовано молекулярні, клітинні та системні аспекти біологічної дії молекулярного водню. Розкрито вплив молекулярного водню на різні пули клітин і процеси регенерації, його антиоксидантні та антиапоптичні ефекти. Описано протизапальну дію і регуляцію піроптозу молекулярним воднем. У цій статті інформацію проаналізовано з використанням баз даних PubMed, PubChem, ScienceDirect, Європейської Фармакопеї та наукової літератури.
Мета дослідження – проаналізувати наукову літературу і систематизувати інформацію щодо уявлень про природу та шляхи надходження молекулярного водню в організм, особливостей і механізмів його молекулярних, клітинних, органно-тканинних та системних біологічних ефектів.
Висновки. Молекулярний водень – найлегший і найпоширеніший медичний газ, який має широкий спектр біологічної активності й характеризується антиоксидантною, протизапальною та антиапоптичною діями. Він також бере участь у регуляції експресії численних генів, захисті біомакромолекул від окиснювального ушкодження, стимуляції виробництва енергії (АТФ) тощо. Водночас, незважаючи на різке збільшення кількості досліджень і публікацій щодо біомедичного застосування молекулярного водню, питання його використання як прорегенеративного агента потребує додаткового вивчення. Застосування даної молекули має численні переваги завдяки широкому спектру молекулярних реакцій, які вона викликає. Тому проведення цілеспрямованих досліджень у цій галузі може відкрити нові горизонти регенеративної медицини та створити інноваційну технологію прискореного відновлення організму.
Посилання
Ichihara, M., Sobue, S., Ito, M., Ito, M., Hirayama, M., et al (2015). Beneficial biological effects and the underlying mechanisms of molecular hydrogen-comprehensive review of 321 original articles. Med. Gas Res., 5, 1-21. DOI: https://doi.org/10.1186/s13618-015-0035-1
Shen, M., Zhang, H., Yu, C., Wang, F., Sun, X. (2014). A review of experimental studies of hydrogen as a new therapeutic agent in emergency and critical care medicine. Med. Gas Res., 4, 17. DOI: https://doi.org/10.1186/2045-9912-4-17
Hirano, S.I., Ichikawa, Y., Kurokawa, R., Takefuji, Y., Satoh, F. (2020). A “philosophical molecule”, hydrogen may overcome senescence and intractable diseases. Med. Gas Res., 10, 47-49. DOI: https://doi.org/10.4103/2045-9912.279983
Tao, G., Song, G., Qin, S. (2019). Molecular hydrogen: Current knowledge on mechanism in alleviating free radical damage and diseases. Acta Biochim. Biophys. Sin., 51, 1189-1197. DOI: https://doi.org/10.1093/abbs/gmz121
Wang, L., Zhao, C., Wu, S., Xiao, G., Zhuge, X., et al. (2018). Hydrogen gas treatment improves the neurological outcome after traumatic brain injury via increasing miR-21 expression. Shock., 50, 308-315. DOI: https://doi.org/10.1097/SHK.0000000000001018
Wu, J., Wang, R., Yang, D., Tang, W., Chen, Z., et al. (2018). Hydrogen postconditioning promotes survival of rat retinal ganglion cells against ischemia/reperfusion injury through the PI3K. Akt pathway. Biochem. Biophys. Res. Commun., 495, 2462-2468. DOI: https://doi.org/10.1016/j.bbrc.2017.12.146
Hirano, S.-I., Ichikawa, Y., Sato, B., Yamamoto, H., Takefuji, Y., et al. (2021). Molecular Hydrogen as a Potential Clinically Applicable Radioprotective Agent. Int. J. Mol. Sci., 22, 4566. DOI: https://doi.org/10.3390/ijms22094566
Hu, Q., Zhou, Y., Wu, S., Wu, W., Deng, Y., et al. (2020). Molecular hydrogen: A potential radioprotective agent. Biomed. Pharmacother., 130 , 110589. DOI: https://doi.org/10.1016/j.biopha.2020.110589
Runtuwene, J., Amitani, H., Amitani, M., Asakawa, A., Cheng, K.C., et al. (2015). Hydrogen-water enhances 5-fluorouracil-induced inhibition of colon cancer. PeerJ., 3 , 859. DOI: https://doi.org/10.7717/peerj.859
Hirano, S.-I., Yamamoto, H., Ichikawa, Y., Sato, B., Takefuji, Y., [et al] (2021). Molecular Hydrogen as a Novel Antitumor Agent: Possible Mechanisms Underlying Gene Expression. Int. J. Mol. Sci., 22, 8724. DOI: https://doi.org/10.3390/ijms22168724
Wang, D., Wang, L., Zhang, Y., Zhao, Y., Chen, G. (2018). Hydrogen gas inhibits lung cancer progression through targeting SMC. Biomed. Pharmacol., 104, 788–797.
Boyle, R. Tracts written by the honourable Robert Boyle Containing New Experiments Touching the Relation Betwixt Flame And Air: And About Explosions: An Hydrostatical Discourse Occasion’d by Some Objections of Dr. Henry More Against Some Explications of New Experiments Made by the Author of these Tracts: To Which is Annex’t, an Hydrostatical Letter, Dilucidating an Experiment about a Way of Weighing Water in Water; Printed for Richard Davis, Book-Seller in Oxon. 1672. Accessmode:https://quod.lib.umich.edu/e/eebo2/A29057.0001.001/1:21.1?rgn=div2;view=fulltext (accessed on 22 January 2023).
Cavendish, H. XIX. (1766). Three papers, containing experiments on factitious air. Phil. Trans. R. Soc., 56, 141-184. DOI: https://doi.org/10.1098/rstl.1766.0019
Beddoes, T. (1793). A Letter to Erasmus Darwin, M.D. On A New Method of Treating Pulmonary Consumption, and Some Other Diseases Hitherto Found Incurable; Bulgin & Rosser: Bristol, UK.
Beddoes, T. (1796). Considerations on the Medicinal Use, and on the Production of Factitious Airs. Ann. Med., 1, 245-265.
Levitt, M.D. (1969). Production and excretion of hydrogen gas in man. N. Engl. J. Med., 281, 122-127. DOI: https://doi.org/10.1056/NEJM196907172810303
Dole, M., Wilson, F.R., Fife, W.P. (1975). Hyperbaric hydrogen therapy: A possible treatment for cancer. Science., 190 , 152-154. DOI: https://doi.org/10.1126/science.1166304
Lanphier, E.H. (1972). Human respiration under increased pressures. Symp. Soc. Exp. Biol., 26, 379-394.
Van Haaster, D.J., Hagedoorn, P.L., Jongejan, J.A., Hagen, W.R. (2005). On the relationship between affinity for molecular hydrogen and the physiological directionality of hydrogenases. Biochem. Soc. Trans., 33, Pt 1, 12-14. DOI: https://doi.org/10.1042/BST0330012
Yanagihara, T., Arai, K., Miyamae, K., Sato, B., Shudo, T., et al. (2005). Electrolyzed Hydrogen-Saturated Water for Drinking Use Elicits an Antioxidative Effect: A Feeding Test with Rats. Biosci. Biotechnol. Biochem., 69, 1985-1987. DOI: https://doi.org/10.1271/bbb.69.1985
Ohsawa, I., Ishikawa, M., Takahashi, K., Watanabe, M., Nishimaki, K., et al. (2007). Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med., 13 , 688-694. DOI: https://doi.org/10.1038/nm1577
Guan, W.J., Chen, R.C., Zhong, N.S. (2020). Strategies for the prevention and management of coronavirus disease 2019. Eur. Respir. J., 55 , 2000597. DOI: https://doi.org/10.1183/13993003.00597-2020
Tian, Y., Zhang, Y., Wang, Y., Chen, Y., Fan, W., et al. (2021). Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis. Front. Physiol., 12, 789507. DOI: https://doi.org/10.3389/fphys.2021.789507
Fu, Z., Zhang, J. (2022). Molecular hydrogen is a promising therapeutic agent for pulmonary disease. J. Zhejiang Univ. Sci. B., 23, 102-122. DOI: https://doi.org/10.1631/jzus.B2100420
Guan, W.J., Wei, C.H., Chen, A.L., Sun, X.C., Guo, G.Y., et al. (2020). Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial. J. Thorac. Dis., 12, 3448-3452. DOI: https://doi.org/10.21037/jtd-2020-057
Liu, X., Ma, C., Wang, X., Wang, W., Li, Z., et al. (2017). Hydrogen coadministration slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Int. J. Chron. Obstruct. Pulmon. Dis., 12, 1309-1324. DOI: https://doi.org/10.2147/COPD.S124547
Zheng, Z.G., Sun, W.Z., Hu, J.Y., Jie, Z.J., Xu, J.F., et al. (2021). Hydrogen/oxygen therapy for the treatment of an acute exacerbation of chronic obstructive pulmonary disease: Results of a multicenter, randomized, double-blind, parallel-group controlled trial. Respir. Res., 22, 149. DOI: https://doi.org/10.1186/s12931-021-01740-w
Huang, P., Wei, S., Huang, W., Wu, P., Chen, S., et al. (2019). Hydrogen gas inhalation enhances alveolar macrophage phagocytosis in an ovalbumin-induced asthma model. Int. Immunopharmacol., 74, 105646. DOI: https://doi.org/10.1016/j.intimp.2019.05.031
LeBaron, T.W., Kura, B., Kalocayova, B., Tribulova, N., Slezak, J. (2019). A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules, 24, 2076. DOI: https://doi.org/10.3390/molecules24112076
Cole, A.R., Sperotto, F., DiNardo, J.A., Carlisle, S., Rivkin, M.J., et al. (2021). Safety of prolonged inhalation of hydrogen gas in air in healthy adults. Crit. Care Explor., 3, e543. DOI: https://doi.org/10.1097/CCE.0000000000000543
Asada, R., Tazawa, K., Sato, S., Miwa, N. (2020). Effects of hydrogen-rich water prepared by alternating-current-electrolysis on antioxidant activity, DNA oxidative injuries, and diabetes related markers. Med. Gas Res., 10, 114-121. DOI: https://doi.org/10.4103/2045-9912.296041
Shimouchi, A., Nose, K., Shirai, M., Kondo, T. (2012). Estimation of molecular hydrogen consumption in the human whole body after the ingestion of hydrogen-rich water. Adv. Exp. Med. Biol., 737, 245-250. DOI: https://doi.org/10.1007/978-1-4614-1566-4_36
Liu, C., Kurokawa, R., Fujino, M., Hirano, S., Sato, B., et al. (2014). Estimation of the hydrogen concentration in rat tissue using an airtight tube following the administration of hydrogen via various routes. Sci. Rep., 4, 5485. DOI: https://doi.org/10.1038/srep05485
Kawamura, M., Imamura, R., Kobayashi, Y., Taniguchi, A., Nakazawa, S., [et al.] (2020). Oral administration of Si-based agent attenuates oxidative stress and ischemia-reperfusion injury in a rat model: A novel hydrogen administration method. Front. Med., 7, 95. DOI: https://doi.org/10.3389/fmed.2020.00095
Zhao, P.H., Jin, Z.K., Chen, Q., Meng, J., Lu, X., (2018). Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun., 9, 4241. DOI: https://doi.org/10.1038/s41467-018-06630-2
Kou, Z., Zhao, P.H., Wang, Z.H., Jin, Z., Chen, L., et al. (2019). Acid-responsive H2-releasing Fe nanoparticles for safe and effective cancer therapy. J. Mater. Chem. B., 7, 2759-2765. DOI: https://doi.org/10.1039/C9TB00338J
He, Y., Zhang, B., Chen, Y., Jin, Q., Wu, J. [et al] (2017). Image-guided hydrogen gas delivery for protection from myocardial ischemia-reperfusion injury via microbubbles. ACS Appl. Mater. Interfaces, 9, 21190-21199. DOI: https://doi.org/10.1021/acsami.7b05346
Katiukhin, L.N. (2016). Influence of the course of treatment by injections of ozonized saline on rheological properties of erythrocytes in patients with complex pathology. Hum. Physiol., 42, 672-677. DOI: https://doi.org/10.1134/S0362119716050091
Martusevich, A.K., Peretyagin, S.P., Ruchin, M.V., Struchkov, A.A. (2018). Ozone Therapy in Patients with Burn Disease. J. Biomed. Sci. Eng., 11, 27-35. DOI: https://doi.org/10.4236/jbise.2018.112003
Martínez-Sánchez, G., Schwartz, A., Di Donna, V. (2020). Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/COVID-19. Antioxidants., 9, 389. DOI: https://doi.org/10.3390/antiox9050389
Zhu, Q., Wu, Y., Li, Y., Chen, Z., Wang, L., et al. (2018). Positive effects of hydrogen-water bathing in patients of psoriasis and parapsoriasis en plaques. Sci. Rep., 8 , 8051. DOI: https://doi.org/10.1038/s41598-018-26388-3
Asada, R., Saitoh, Y., Miwa, N. (2019). Effects of hydrogen-rich water bath on visceral fat and skin blotch, with boiling-resistant hydrogen bubbles. Med. Gas Res., 9, 68-73. DOI: https://doi.org/10.4103/2045-9912.260647
Oharazawa, H., Igarashi, T., Yokota, T., Fujii, H., Suzuki, H., [et al] (2010). Protection of the retina by rapid diffusion of hydrogen: Administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Invest. Ophthalmol. Vis. Sci., 51, 487-492. DOI: https://doi.org/10.1167/iovs.09-4089
Zhai, X., Chen, X., Shi, J., Shi, D., Ye, Z. [et al.] (2013). Lactulose ameliorates cerebral ischemia-reperfusion injury in rats by inducing hydrogen by activating Nrf2 expression. Free Radic. Biol. Med., 65, 731-741. DOI: https://doi.org/10.1016/j.freeradbiomed.2013.08.004
Zhang, M., Xu, Y., Zhang, J., Sun, Z., Ban, Y., et al. (2021). Application of methane and hydrogen-based breath test in the study of gestational diabetes mellitus and intestinal microbes. Diabetes Res. Clin. Pract., 176, 108818. DOI: https://doi.org/10.1016/j.diabres.2021.108818
Jahng, J., Jung, I.S., Choi, E.J., Conklin, J.L., Park, H. (2012). The effects of methane and hydrogen gases produced by enteric bacteria on ileal motility and colonic transit time. Neurogastroenterol. Motil., 24, 185-e92. DOI: https://doi.org/10.1111/j.1365-2982.2011.01819.x
Ge, L., Qi, J., Shao, B., Ruan, Z., Ren, Y., et al. (2022). Microbial hydrogen economy alleviates colitis by reprogramming colonocyte metabolism and reinforcing intestinal barrier. Gut Microbes., 14, 2013764. DOI: https://doi.org/10.1080/19490976.2021.2013764
Li, Q., Kato, S., Matsuoka, D., Tanaka, H., Miwa, N. (2013). Hydrogen water intake via tube- feeding for patients with pressure ulcer and its reconstructive effects on normal human skin cells in vitro. Med. Gas Res., 3, 20. DOI: https://doi.org/10.1186/2045-9912-3-20
Cui, Y., Zhang, H., Ji, M., Jia, M., Chen, H., et al. (2014). Hydrogen-rich saline attenuates neuronal ischemia-reperfusion injury by protecting mitochondrial function in rats. J. Surg. Res., 192, 564-572. DOI: https://doi.org/10.1016/j.jss.2014.05.060
Ostojic, S.M. (2015). Molecular Hydrogen in Sports Medicine: New Therapeutic Perspectives. Int. J. Sports Med., 36, 273-279. DOI: https://doi.org/10.1055/s-0034-1395509
Noda, K., Shigemura, N., Tanaka, Y., Kawamura, T., Hyun Lim, S., [et al] (2013). A novel method of preserving cardiac grafts using a hydrogen-rich water bath. J. Heart Lung Transpl., 32, 241-250. DOI: https://doi.org/10.1016/j.healun.2012.11.004
Sano, M., Ichihara, G., Katsumata, Y., Hiraide, T., Hirai, A., [et al] (2020). Pharmacokinetics of a single inhalation of hydrogen gas in pigs. PLoS ONE, 15, e0234626. DOI: https://doi.org/10.1371/journal.pone.0234626
Sobue, S., Yamai, K., Ito, M., Ohno, K., Iwamoto T. (2015). Simultaneous oral and inhalational intake of molecular hydrogen additively suppresses signaling pathways in rodents. Mol. Cell Biochem. , 403 , 231-241. DOI: https://doi.org/10.1007/s11010-015-2353-y
Genestra, M. (2007). Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal., 19, 1807-1819. DOI: https://doi.org/10.1016/j.cellsig.2007.04.009
Sies, H. (2015). Oxidative stress: A concept in redox biology and medicine. Redox Biol., 4, 180-183. DOI: https://doi.org/10.1016/j.redox.2015.01.002
Dan Dunn, J., Alvarez, L.A., Zhang, X., Soldati, T. (2015). Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol., 6, 472-485. DOI: https://doi.org/10.1016/j.redox.2015.09.005
Liu, Y., Fiskum, G., Schubert, D. (2002). Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem., 80, 780-787. DOI: https://doi.org/10.1046/j.0022-3042.2002.00744.x
Halliwell, B., Gutteridge, J. (2015). Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK. DOI: https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
Grassi, D., Desideri, G., Ferri, L., Aggio, A., Tiberti S., [et al] (2010). Oxidative stress and endothelial dysfunction: Say no to cigarette smoking! Curr. Pharm. Des., 16, 2539-2550. DOI: https://doi.org/10.2174/138161210792062867
Harma, M.I., Harma, M., Erel, O. (2006). Measuring plasma oxidative stress biomarkers in sport medicine. Eur. J. Appl. Physiol., 97, 505-508. DOI: https://doi.org/10.1007/s00421-006-0202-0
Kim, Y.W., Byzova, T.V. (2014). Oxidative stress in angiogenesis and vascular disease. Blood, 123, 625-631. DOI: https://doi.org/10.1182/blood-2013-09-512749
Tanriverdi, H., Evrengul, H., Kuru, O.,Tanriverdi, S., Seleci, D., Enli, Y., Kaftan, A.H., Kilic, M. (2006). Cigarette smoking induced oxidative stress may impair endothelial function and coronary blood flow in angiographically normal coronary arteries. Circ. J., 70, 593-599. DOI: https://doi.org/10.1253/circj.70.593
Burton, G.J., Jauniaux, E. (2011). Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol., 25, 287-299. DOI: https://doi.org/10.1016/j.bpobgyn.2010.10.016
Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H.J., Nagano, T. (2003). Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem., 278, 3170-3175. DOI: https://doi.org/10.1074/jbc.M209264200
Ohta, S. (2014). Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol. Ther., 144, 1-11. DOI: https://doi.org/10.1016/j.pharmthera.2014.04.006
Ohta, S. (2015). Molecular hydrogen as a novel antioxidant: Overview of the advantages of hydrogen for medical applications. Methods Enzymol., 555, 289-317. DOI: https://doi.org/10.1016/bs.mie.2014.11.038
Gharib, B., Hanna, S., Abdallahi, O.M., Lepidi, H., Gardette, B., et al. (2001). Anti-inflammatory properties of molecular hydrogen: Investigation on parasite-induced liver inflammation. Comptes Rendus Acad. Sci. III, 324, 719-724. DOI: https://doi.org/10.1016/S0764-4469(01)01350-6
Zhang, H.Q., Davies, K.J.A., Forman, H.J. (2015). Oxidative stress response and Nrf2 signaling in aging. Free Radic. Biol. Med., 88, 314-336. DOI: https://doi.org/10.1016/j.freeradbiomed.2015.05.036
Xie, K.L., Zhang, Y., Wang, Y.Q., Meng, X., Wang, Y., et al. (2020). Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation. Inflamm. Res., 69, 697-710. DOI: https://doi.org/10.1007/s00011-020-01347-9
Yu, Y., Yang, Y.Y., Yang, M., Wang, C., Xie, K., et al. (2019). Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2/ HO-1-dependent pathway. Int. Immunopharmacol., 69, 11-18. DOI: https://doi.org/10.1016/j.intimp.2019.01.022
Cai, W.W., Zhang, M.H., Yu, Y.S., Cai, J.H. (2013). Treatment with hydrogen molecule alleviates TNFα-induced cell injury in osteoblast. Mol. Cell. Biochem., 373, 1-9. DOI: https://doi.org/10.1007/s11010-012-1450-4
Shinbo, T., Kokubo, K., Sato, Y., Hagiri, S., Hataishi, R., et al. (2013). Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am. J. Physiol. Circ. Physiol., 305, 542-550. DOI: https://doi.org/10.1152/ajpheart.00844.2012
Forrester, S.J., Kikuchi, D.S., Hernandes, M.S., Xu, Q., et al. (2018). Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res., 122 , 877-902. DOI: https://doi.org/10.1161/CIRCRESAHA.117.311401
Rimessi, A., Previati, M., Nigro, F., Wieckowski, M.R., Pinton, P. (2016). Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. Int. J. Biochem. Cell Biol., 81 Pt B, 281-293. DOI: https://doi.org/10.1016/j.biocel.2016.06.015
Chen, M., Zhang, J., Chen, Y., Qiu, Y., Luo, Z., et al. (2018). Hydrogen protects lung from hypoxia/re-oxygenation injury by reducing hydroxyl radical production and inhibiting inflammatory responses. Sci. Rep., 8, 8004. DOI: https://doi.org/10.1038/s41598-018-26335-2
Zhao, S., Mei, K., Qian, L., Yang, Y., Liu, W., et al. (2013). Therapeutic effects of hydrogen-rich solution on aplastic anemia in vivo. Cell. Physiol. Biochem., 32, 549-560. DOI: https://doi.org/10.1159/000354459
Wang, X., Yu, P., Yang, Y., Liu, X., Jiang, J., et al. (2015). Hydrogen-rich saline resuscitation alleviates inflammation induced by severe burn with delayed resuscitation. Burns, 41, 379-385. DOI: https://doi.org/10.1016/j.burns.2014.07.012
Schulze-Osthoff, K., Los, M., Baeuerle, P.A. (1995). Redox signalling by transcription factors NF-κB and AP-1 in lymphocytes. Biochem. Pharmacol., 50, 735-741. DOI: https://doi.org/10.1016/0006-2952(95)02011-Z
Shao, A., Wu, H., Hong, Yu., Tu, S., Sun, X., et al. (2016). Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: Possible involvement of NF-κB pathway and NLRP3 inflammasome. Mol. Neurobiol., 53, 3462-3476. DOI: https://doi.org/10.1007/s12035-015-9242-y
Zhang, G., Li, Z., Meng, C., Kang, J., Zhang, M. et al. (2018). The anti-inflammatory effect of hydrogen on lung transplantation model of pulmonary microvascular endothelial cells during cold storage period. Transplantation, 102, 1253-1261. DOI: https://doi.org/10.1097/TP.0000000000002276
Radyuk, S.N. (2021). Mechanisms Underlying the Biological Effects of Molecular Hydrogen. Curr. Pharm. Des., 27, 626-735. DOI: https://doi.org/10.2174/1381612826666201211112846
Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicol. Pathol., 35, 495-516. DOI: https://doi.org/10.1080/01926230701320337
Singh, R., Letai, A., Sarosiek, K. (2019). Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 20, 175-193. DOI: https://doi.org/10.1038/s41580-018-0089-8
Shalini, S., Dorstyn, L., Dawar, S., Kumar, S. (2015). Old, new and emerging functions of caspases. Cell Death Differ., 22, 526-539. DOI: https://doi.org/10.1038/cdd.2014.216
Westphal, D., Kluck, R.M., Dewson, G. (2014). Building blocks of the apoptotic pore: How Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ., 21, 196-205. DOI: https://doi.org/10.1038/cdd.2013.139
Chen, K., Wang, N., Diao, Y., Dong, W., Sun, Y., [et al.] (2017). Hydrogen-rich saline attenuates brain injury induced by cardiopulmonary bypass and inhibits microvascular endothelial cell apoptosis via the PI3K/Akt/GSK3β signaling pathway in rats. Cell. Physiol. Biochem., 43, 1634-1647. DOI: https://doi.org/10.1159/000484024
Liu, Y.Q., Liu, Y.F., Ma, X.M., Xiao, Y.D., Wang, Y.B., et al. (2015). Hydrogen-rich saline attenuates skin ischemia/reperfusion induced apoptosis via regulating Bax/Bcl-2 ratio and ASK-1/JNK pathway. J. Plast. Reconstr. Aesthetic Surg., 68, 147-156. DOI: https://doi.org/10.1016/j.bjps.2015.03.001
Mo, X.Y., Li, X.M., She, C.S., Lu, X.Q., Xiao, C.G., [et al.] (2019). Hydrogen-rich saline protects rat from oxygen glucose deprivation and reperfusion-induced apoptosis through VDAC1 via Bcl-2. Brain Res., 1706, 110-115. DOI: https://doi.org/10.1016/j.brainres.2018.09.037
Li, J., Hong, Z.J., Liu, H., Zhou, J., Cui, L., et al. (2016). Hydrogen-rich saline promotes the recovery of renal function after ischemia/ reperfusion injury in rats via anti-apoptosis and anti-inflammation. Front. Pharmacol., 7, 106. DOI: https://doi.org/10.3389/fphar.2016.00106
Jiao, Y., Yu, Y., Li, B., Gu, X., Xie, K., et al. (2020). Protective effects of hydrogen-rich saline against experimental diabetic peripheral neuro-pathy via activation of the mitochondrial ATP-sensitive potassium channel channels in rats. Mol. Med. Rep., 21, 282-290. DOI: https://doi.org/10.3892/mmr.2019.10795
Yang, Y., Liu, P.Y., Bao, W., Chen, S.J., Wu, F.S., [et al] (2020). Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer, 20, 28. DOI: https://doi.org/10.1186/s12885-019-6491-6
, J.J., Gao, W.Q., Shao, F. (2017). Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 42, 245-254. DOI: https://doi.org/10.1016/j.tibs.2016.10.004
Zha, Q.B., Wei, H.X., Li, C.G., Liang, Y.D., Xu, L.H., et al. (2016).ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Front. Immunol., 7, 597. DOI: https://doi.org/10.3389/fimmu.2016.00597
Nie, C., Ding, X.A.R., Zheng, M., Li, Z., Pan, S., et al. (2021). Hydrogen gas inhalation alleviates myocardial ischemia-reperfusion injury by the inhibition of oxidative stress and NLRP3-mediated pyrop- tosis in rats. Life Sci., 272 , 119248. DOI: https://doi.org/10.1016/j.lfs.2021.119248
Yang, Z.F., Klionsky, D.J. (2010). Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol., 22, 124-131. DOI: https://doi.org/10.1016/j.ceb.2009.11.014
Maiuri, M.C., Zalckvar, E., Kimchi, A., Kroemer, G. (2007). Self-eating and self-killing: Crosstalk between autophagy and apop-tosis. Nat. Rev. Mol. Cell Biol., 8, 741-752. DOI: https://doi.org/10.1038/nrm2239
Chen, H., Mao, X., Meng, X., Li, Y., Feng, J., et al. (2019). Hydrogen alleviates mitochondrial dysfunction and organ damage via autophagy-mediated NLRP3 inflammasome inactivation in sepsis. Int. J. Mol. Med., 44, 1309-1324. DOI: https://doi.org/10.3892/ijmm.2019.4311
Wang, Y., Wang, L., Hu, T., Wang, F., Han, Z., et al. (2020). Hydrogen improves cell viability partly through inhibition of autophagy and activation of PI3K/Akt/GSK3β signal pathway in a micro-vascular endothelial cell model of traumatic brain injury. Neurol. Res., 42, 487-496. DOI: https://doi.org/10.1080/01616412.2020.1747717
Adzavon, Y.M., Xie, F., Yi, Y., Jiang, X., Zhang, X., et al. (2022). Long-term and daily use of molecular hydrogen induces reprogramming of liver metabolism in rats by modulating NADP/NADPH redox pathways. Sci. Rep., 12 , 3904. DOI: https://doi.org/10.1038/s41598-022-07710-6
Kawasaki, H., Guan, J., Tamama, K. (2010). Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials. Biochem. Biophys. Res. Commun., 397, 608-613. DOI: https://doi.org/10.1016/j.bbrc.2010.06.009
Hasegawa, T., Ito, M., Hasegawa, S., Teranishi, M., Takeda, K., et al. (2022). Molecular Hydrogen Enhances Proliferation of Cancer Cells That Exhibit Potent Mitochondrial Unfolded Protein Response. Int. J. Mol. Sci., 23, 2888. DOI: https://doi.org/10.3390/ijms23052888
Fiorese, C.J., Schulz, A.M., Lin, Y.F., Rosin, N., Pellegrino, M.W., et al. (2016). The Transcription Factor ATF5 Mediates a Mammalian Mitochondrial UPR. Curr. Biol., 26, 2037-2043. DOI: https://doi.org/10.1016/j.cub.2016.06.002
Wu, Z., Senchuk, M.M., Dues, D.J., Johnson, B.K., Cooper, J.F., et al. (2018). Mitochondrial unfolded protein response transcription factor ATFS-1 promotes longevity in a long-lived mitochondrial mutant through activation of stress response pathways. BMC Biol., 16, 147. DOI: https://doi.org/10.1186/s12915-018-0615-3
Lin, Y.F., Haynes, C.M. (2016). Metabolism and the UPR(mt). Mol. Cell., 61, 677-682. DOI: https://doi.org/10.1016/j.molcel.2016.02.004
Zhao, Y.S., An, J.R., Yang, S., Guan, P., Yu, F.Y., et al. (2019). Hydrogen and Oxygen Mixture to Improve Cardiac Dysfunction and Myocardial Pathological Changes Induced by Intermittent Hypoxia in Rats. Oxidative Med. Cell. Longev., 7415212. DOI: https://doi.org/10.1155/2019/7415212
Wang, Y.T., Lim, Y., McCall, M.N., Huang, K.T., Haynes, C.M., et al. (2019).Cardioprotection by the mitochondrial unfolded protein response requires ATF. Am. J. Physiol. Heart Circ. Physiol., 317, H472-H478. DOI: https://doi.org/10.1152/ajpheart.00244.2019
Berger, E., Rath, E., Yuan, D., Waldschmitt, N., Khaloian, S., et al. (2016). Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat. Commun., 7, 13171. DOI: https://doi.org/10.1038/ncomms13171
Liu, M.-Y., Xie, F., Zhang, Y., Wang, T.-T., Ma, S.-N., [et al.] (2019). Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation. Stem Cell Res. Ther., 10, 145. DOI: https://doi.org/10.1186/s13287-019-1241-x
Fang, W., Wang, G., Tang, L., Su, H., Chen, H., et al. (2018). Hydrogen gas inhalation protects against cutaneous ischaemia/reperfusion injury in a mouse model of pressure ulcer. J. Cell. Mol. Med., 22, 4243-4252. DOI: https://doi.org/10.1111/jcmm.13704
Buchholz, B.M., Masutani, K., Kawamura, T., Peng, X., Toyoda, Y., et al. (2011). Hydrogen-enriched preservation protects the isogeneic intestinal graft and amends recipient gastric function during transplantation. Transplantation, 92, 985-992. DOI: https://doi.org/10.1097/TP.0b013e318230159d
Deng, L., Du, C., Song, P., Chen, T., Rui, S., et al. (2021). The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxidative Med. Cell. Longev., 2021, 8852759. DOI: https://doi.org/10.1155/2021/8852759
Lin, T.-K., Zhong, L., Santiago, J.L. (2017). Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci., 19, 70. DOI: https://doi.org/10.3390/ijms19010070
Litwiniuk, M., Krejner, A., Speyrer, M.S., Gauto, A.R., Grzela, T. (2016). Hyaluronic Acid in Inflammation and Tissue Regeneration. Wounds, 28, 78-88.
Werner, S., Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiol. Rev., 83, 835-870. DOI: https://doi.org/10.1152/physrev.2003.83.3.835
Dohi, K., Kraemer, B.C., Erickson, M.A., McMillan, P.J., Kovac, A., [et al.] (2014). Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury. PLoS ONE, 9, 108034. DOI: https://doi.org/10.1371/journal.pone.0108034
Noda, K., Tanaka, Y., Shigemura, N., Kawamura, T., Wang, Y., et al. (2012). Hydrogen-supplemented drinking water protects cardiac allografts from inflammation-associated deterioration. Transpl. Int., 25, 1213-1222. DOI: https://doi.org/10.1111/j.1432-2277.2012.01542.x
Pokotylo O., Zakharchuk I., Vykhovanets B. (2020). State and prospects of using molecular hydrogen for athletes. Sportyvnyi visnyk Prydniprovia, 1, 443-450 [in Ukrainian]. DOI: https://doi.org/10.32540/2071-1476-2019-1-443
Pokotylo, O.S., Holovach, P.I., Pokotylo, S.O. (2019). Study of patterns of formation of electron-donating water based on changes in pH and ORP of water in thermoses-ionizers-generators "Living Water". Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka. Ser. Biolohiia. Ternopil: TNPU im. V. Hnatiuka, 4 (78), 24-29 [in Ukrainian]. DOI: https://doi.org/10.25128/2078-2357.19.4.4
Xiao, L., Miwa, N. (2017). Hydrogen-rich water achieves cytoprotection from oxidative stress injury in human gingival fibroblasts in culture or 3D-tissue equivalents, and wound-healing promotion, together with ROS-scavenging and relief from glutathione diminishment. Hum Cell. Apr., 30 (2), 72-87. DOI: https://doi.org/10.1007/s13577-016-0150-x
Chu, J., Gao, J., Wang, J. (2021). Mechanism of hydrogen on cervical cancer suppression revealed by high throughput RNA sequencing. Oncol Rep., 46, 141. DOI: https://doi.org/10.3892/or.2021.8092
Kawai, D., Takaki, A., Nakatsuka, A. (2012). Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology., 56, 912-921. DOI: https://doi.org/10.1002/hep.25782
Wang D., Wang L., Zhang Y., Zhao Y., Chen G. (2018). Hydrogen gas inhibits lung cancer progression through targeting SMC3. Biomed Pharmacother., 104, 788-797. DOI: https://doi.org/10.1016/j.biopha.2018.05.055
Jiang, Y., Liu, G., Zhang, L. et al. (2018). Therapeutic efficacy of hydrogen rich saline alone and in combination with PI3K inhibitor in non small cell lung cancer. Mol. Med. Rep., 18, 2182-2190. DOI: https://doi.org/10.3892/mmr.2018.9168
Chen, J.B., Lu, Y.Y., Xu, K.C. (2020). A narrative review of hydrogen oncology: from real world survey to real world evidence. Med Gas Res., 10, 130. DOI: https://doi.org/10.4103/2045-9912.296044
Madsen, C.D., Sahai, E. (2010). Cancer dissemination – Lessons from leukocytes. Dev Cell., 19, 13-26. DOI: https://doi.org/10.1016/j.devcel.2010.06.013
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Медична та клінічна хімія
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.