ГЕНЕТИЧНІ МАРКЕРИ ЦУКРОВОГО ДІАБЕТУ 2 ТИПУ
DOI:
https://doi.org/10.11603/mcch.2410-681X.2019.v.i4.10688Ключові слова:
генетичні маркери, цукровий діабет 2 типу, поліморфізм генівАнотація
Вступ. Цукровий діабет 2 типу (ЦД2) є глобальною проблемою охорони здоров’я у зв’язку зі швидкими культурними та соціальними змінами, постарінням населення, посиленням урбанізації, зміною харчування, зменшенням фізичної активності. Деякі фактори ризику можна контролювати, наприклад режим харчування та ожиріння, інші, такі, як стать, вік, генетика, перебувають поза нашим контролем. Вважають, що цукровий діабет 2 типу є полігенним розладом, який розвивається через складну взаємодію між декількома генами та факторами навколишнього середовища. Першим доказом ролі генетичних маркерів у розвитку цукрового діабету 2 типу були дослідження, проведені в другій половині ХХ ст. на близнюках у багатодітних сім’ях. Перші гени-кандидати виявлено для рідкісних форм цукрового діабету (неонатальний, мітохондріальний ЦД, MODY). На даний час відомо чимало генетичних маркерів ЦД2, однак патогенетичний зв’язок більшості з них ще потрібно підтвердити. Проте це лише незначна частка генетичної складової хвороби. Темпи дослідження складної генетики ЦД2 протягом останнього десятиліття були вражаючими. На даний час відомо понад 300 локусів, які тісно пов’язані із ЦД2. Найбільш дослідженими і такими, що становлять вагомий науковий інтерес, є гени KCNJ11, TCF7L2, PPARG, IRS1, PON 1, SLC30A8, FTO та TNFα. Варто відзначити, що роль генів у патогенезі цукрового діабету не однозначна і потребує подальшого дослідження.
Мета дослідження – проаналізувати сучасні літературні джерела про генетичні маркери, які беруть участь у механізмах розвитку цукрового діабету 2 типу.
Висновки. Аналіз літературних джерел обґрунтовує актуальність дослідження генетичних факторів у патогенезі цукрового діабету 2 типу. Визначення ролі поліморфізму генів у розвитку і прогресуванні цукрового діабету 2 типу відкриє шлях для нових підходів до діагностики, стратифікації, моніторингу, профілактики та лікування цього захворювання.
Посилання
Zheng, Y., Ley, S. & Hu, F. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 14, 88-98. DOI: https://doi.org/10.1038/nrendo.2017.151
Kaiser, A.B., Zhang, N., & Van Der Pluijm, W. (2018). Global prevalence of type 2 diabetes over the next ten years (2018-2028). Diabetes, 67 (1), 202. DOI: https://doi.org/10.2337/db18-202-LB
Saddik, B., & Al-Dulaijan, N. (2015). Diabetic patients’ willingness to use tele-technology to manage their disease - A descriptive study. Online J. Public Health Inform, 7 (2), e214. doi:10.5210/ojphi.v7i2.6011 DOI: https://doi.org/10.5210/ojphi.v7i2.6011
Sun, W. Yao, S., Tang, J., Liu, S., Chen, J., & Deng, D. (2018). Integrative analysis of superenhancer SNPs for type 2 diabetes. PLoS ONE, 13 (1).
Forouhi, N.G., & Wareham, N. J. (2019). Epidemiology of diabetes. Medicine, 47 (1), 22-27. DOI: https://doi.org/10.1016/j.mpmed.2018.10.004
Ali, O. (2013). Genetics of type 2 diabetes. World J. Diabetes, 4 (4), 114-123. DOI: https://doi.org/10.4239/wjd.v4.i4.114
Scott, R.A., Scott, L.J., Mägi, R., Marullo, L., Gaulton, K.J. Kaakinen, M., … et al. (2017). Diabetes genetics replication and meta-analysis (DIAGRAM) consortium. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes, 66 (11), 2888-2902. doi:10.2337/db16-1253 DOI: https://doi.org/10.2337/db16-1253
Mahajan, A., Taliun, D., Thurner, M., Robertson, N.R., Torres, J.M., Rayner, N. W., . . . McCarthy, M.I. (2018). Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet., 50 (11), 1505-1513. doi:10.1038/s41588-018-0241-6 DOI: https://doi.org/10.1038/s41588-018-0241-6
Khan, V., Bhatt, D., Khan, S., VERMA, A.K., Hasan, R., Rafat, S., ... Dev, K. (2019). Association of KCNJ11 genetic variations with risk of type 2 diabetes mellitus (T2DM) in North Indian population. Preprints, 2019070089 doi: 10.20944/preprints201907.0089.v1 DOI: https://doi.org/10.20944/preprints201907.0089.v1
Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., ... Froguel, P. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 445 (7130), 881-885. doi:10.1038/nature05616 DOI: https://doi.org/10.1038/nature05616
Koster, J.C., Marshall, B.A., Ensor, N., Corbett, J.A., & Nichols, C.G. (2000). Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. Cell, 100 (6), 645-654. doi:10.1016/s0092-8674(00)80701-1 DOI: https://doi.org/10.1016/S0092-8674(00)80701-1
Fakruddin, M. (2019). Genetics of type 2 diabetes: A review. Journal of Current and Advance Medical Research, 6 (1), 59-63. DOI: https://doi.org/10.3329/jcamr.v6i1.40787
Ding, W., Xu, L., Zhang, L., Han, Z., Jiang, Q., Wang, Z. & Jin, S. (2018). Meta-analysis of association between TCF7L2 polymorphism rs7903146 and type 2 diabetes mellitus. BMC Medical Genetics, 19 (1). DOI: https://doi.org/10.1186/s12881-018-0553-5
Cauchi, S., Meyre, D., Choquet, H., Dina, C., Born, C., Marre, M., ... Group, D.S. (2006). TCF7L2 variation predicts hyperglycemia incidence in a French general population: the data from an epidemiological study on the Insulin Resistance Syndrome (DESIR) study. Diabetes, 55 (11), 3189-3192. doi:10.2337/db06-0692 DOI: https://doi.org/10.2337/db06-0692
Migliorini, A., & Lickert, H. (2015). Beyond association: A functional role for Tcf7l2 in beta-cell development. Mol. Metab., 4 (5), 365-366. doi:10.1016/j.molmet.2015.03.002 DOI: https://doi.org/10.1016/j.molmet.2015.03.002
Dalhat, M., Bello, H., Ibrahim, B. & Labbo, A. (2017). Association of rs7903146 TCF7L2 (C/T) Gene polymorphism and type 2 diabetes mellitus in Pakistani population. Journal of Applied Life Sciences International, 14 (4), 1-7. DOI: https://doi.org/10.9734/JALSI/2017/37411
Huang, Z., Liao, Y., Huang, R., Chen, J. & Sun, H. (2018). Possible role of TCF7L2 in the pathogenesis of type 2 diabetes mellitus. Biotechnology & Biotechnological Equipment, 32 (4), 830-834. DOI: https://doi.org/10.1080/13102818.2018.1438211
Ip, W., Chiang, Y.T., & Jin, T. (2012). The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: The current understanding, dispute, and perspective. Cell Biosci., 2 (1), 28. doi:10.1186/2045-3701-2-28 DOI: https://doi.org/10.1186/2045-3701-2-28
Kersten, S., Desvergne, B., & Wahli, W. (2000). Roles of PPARs in health and disease. Nature, 405 (6785), 421-424. doi:10.1038/35013000 DOI: https://doi.org/10.1038/35013000
Zeggini, E., Weedon, M.N., Lindgren, C.M., Frayling, T.M., Elliott, K.S., Lango, H., ... Hattersley, A.T. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science, 316 (5829), 1336-1341. doi:10.1126/science.1142364 DOI: https://doi.org/10.1126/science.1142364
Muoio, D.M., & Newgard, C.B. (2008). Mechanisms of disease: Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol., 9(3), 193-205. doi:10.1038/nrm2327 DOI: https://doi.org/10.1038/nrm2327
Jakobsen, S.N., Hardie, D.G., Morrice, N., & Tornqvist, H.E. (2001). 5'-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J. Biol. Chem., 276 (50), 46912-46916. doi:10.1074/jbc.C100483200 DOI: https://doi.org/10.1074/jbc.C100483200
Ijaz, A., Babar, S., Sarwar, S., Shahid, S.U., & Shabana. (2019). The combined role of allelic variants of IRS-1 and IRS-2 genes in susceptibility to type2 diabetes in the Punjabi Pakistani subjects. Diabetol. Metab. Syndr., 11, 64. doi:10.1186/s13098-019-0459-1 DOI: https://doi.org/10.1186/s13098-019-0459-1
Mahmutovic, L., Bego, T., Sterner, M., Gremsperger, G., Ahlqvist, E., Velija Asimi, Z., ... Semiz, S. (2019). Association of IRS1 genetic variants with glucose control and insulin resistance in type 2 diabetic patients from Bosnia and Herzegovina. Drug Metab. Pers. Ther., 34 (1). doi:10.1515/dmpt-2018-0031 DOI: https://doi.org/10.1515/dmpt-2018-0031
Shalimova, A. (2015). Asotsiatsii polimorfizmu hena irs-1 z porushenniamy lipidnoho spektra krovi pry hipertonichnii khvorobi i suputnоmu tsukrovomu diabeti 2-ho typu [Association of IRS>1 gene polymorphism with violations of blood lipid spectrum in patients with essential hypertension and concomitant type 2 diabetes]. Semeynaya medytsyna – Family Medicine, 3, 102-104 [in Ukrainian].
Zhang, D., Zhang, X., Liu, D., Liu, T., Cai, W., Yan, C., & Han, Y. (2016). Association between insulin receptor substrate-1 polymorphisms and high platelet reactivity with clopidogrel therapy in coronary artery disease patients with type 2 diabetes mellitus. Cardiovasc. Diabetol., 15, 50. doi:10.1186/s12933-016-0362-0 DOI: https://doi.org/10.1186/s12933-016-0362-0
Lavin, D.P., White, M.F., & Brazil, D.P. (2016). IRS proteins and diabetic complications. Diabetologia, 59 (11), 2280-2291. doi:10.1007/s00125-016-4072-7 DOI: https://doi.org/10.1007/s00125-016-4072-7
Gong, L., Li, R., Ren, W., Wang, Z., Wang, Z., Yang, M., & Zhang, S. (2017). The FOXO1 Gene-Obesity Interaction Increases the Risk of Type 2 Diabetes Mellitus in a Chinese Han Population. J. Korean Med. Sci., 32 (2), 264-271. doi:10.3346/jkms.2017.32.2.264 DOI: https://doi.org/10.3346/jkms.2017.32.2.264
Precourt, L.P., Amre, D., Denis, M.C., Lavoie, J.C., Delvin, E., Seidman, E., & Levy, E. (2011). The three-gene paraoxonase family: physiologic roles, actions and regulation. Atherosclerosis, 214 (1), 20-36. doi:10.1016/j.atherosclerosis.2010.08.076 DOI: https://doi.org/10.1016/j.atherosclerosis.2010.08.076
Mackness, M., & Mackness, B. (2015). Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene, 567 (1), 12-21. doi:10.1016/j.gene.2015.04.088 DOI: https://doi.org/10.1016/j.gene.2015.04.088
Levy, D., Reichert, C.O., & Bydlowski, S.P. (2019). Paraoxonases activities and polymorphisms in elderly and old-age diseases: An overview. Antioxidants (Basel), 8 (5). doi:10.3390/antiox8050118 DOI: https://doi.org/10.3390/antiox8050118
Shunmoogam, N., Naidoo, P., & Chilton, R. (2018). Paraoxonase (PON)-1: a brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc. Health Risk Manag., 14, 137-143. doi:10.2147/VHRM.S165173 DOI: https://doi.org/10.2147/VHRM.S165173
Costa, L.G., Cole, T.B., Vitalone, A., & Furlong, C.E. (2005). Measurement of paraoxonase (PON1) status as a potential biomarker of susceptibility to organophosphate toxicity. Clin. Chim. Acta, 352 (1-2), 37-47. doi:10.1016/j.cccn.2004.09.019 DOI: https://doi.org/10.1016/j.cccn.2004.09.019
Bacchetti, T., Ferretti, G., & Sahebkar, A. (2019). The role of paraoxonase in cancer. Semin. Cancer Biol., 56, 72-86. doi:10.1016/j.semcancer.2017.11.013 DOI: https://doi.org/10.1016/j.semcancer.2017.11.013
Tamaki, M., Fujitani, Y., Hara, A., Uchida, T., Tamura, Y., Takeno, K., ... Watada, H. (2013). The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J. Clin. Invest., 123 (10), 4513-4524. doi:10.1172/JCI68807 DOI: https://doi.org/10.1172/JCI68807
Gu, H.F. (2017). Genetic, epigenetic and biological effects of zinc transporter (SLC30A8) in type 1 and type 2 diabetes. Curr. Diabetes Rev., 13 (2), 132-140. doi:10.2174/1573399812666151123104540 DOI: https://doi.org/10.2174/1573399812666151123104540
Billings, L.K., Jablonski, K.A., Ackerman, R.J., Taylor, A., Fanelli, R.R., McAteer, J.B., . . . Diabetes Prevention Program Research Group, R. (2014). The influence of rare genetic variation in SLC30A8 on diabetes incidence and beta-cell function. J. Clin. Endocrinol. Metab., 99 (5), E926-930. doi:10.1210/jc.2013-2378 DOI: https://doi.org/10.1210/jc.2013-2378
Khan, I.A., Jahan, P., Hasan, Q., & Rao, P. (2015). Validation of the association of TCF7L2 and SLC30A8 gene polymorphisms with post-transplant diabetes mellitus in Asian Indian population. Intractable Rare Dis. Res., 4 (2), 87-92. doi:10.5582/irdr.2015.01008 DOI: https://doi.org/10.5582/irdr.2015.01008
Salem, S.D., Saif-Ali, R., Ismail, I.S., Al-Hamodi, Z., & Muniandy, S. (2014). Contribution of SLC30A8 variants to the risk of type 2 diabetes in a multi-ethnic population: a case control study. BMC Endocr. Disord., 14, 2. doi:10.1186/1472-6823-14-2 DOI: https://doi.org/10.1186/1472-6823-14-2
Cheng, L., Zhang, D., Zhou, L., Zhao, J., & Chen, B. (2015). Association between SLC30A8 rs13266634 polymorphism and type 2 diabetes risk: A meta-analysis. Med. Sci. Monit., 21, 2178-2189. doi:10.12659/MSM.894052 DOI: https://doi.org/10.12659/MSM.894052
Lin, Y., Li, P., Cai, L., Zhang, B., Tang, X., Zhang, X., ... Yang, Z. (2010). Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population. BMC Med. Genet., 11, 97. doi:10.1186/1471-2350-11-97 DOI: https://doi.org/10.1186/1471-2350-11-97
Kanoni, S., Nettleton, J. A., Hivert, M.F., Ye, Z., van Rooij, F.J., Shungin, D., ... Dedoussis, G.V. (2011). Total zinc intake may modify the glucose-raising effect of a zinc transporter (SLC30A8) variant: a 14-cohort meta-analysis. Diabetes, 60 (9), 2407-2416. doi:10.2337/db11-0176 DOI: https://doi.org/10.2337/db11-0176
Nikitin, A.G., Potapov, V.Y., Brovkina, O.I., Koksharova, E.O., Khodyrev, D.S., Philippov, Y.I., ... Shestakova, M.V. (2017). Association of polymorphic markers of genes FTO, KCNJ11, CDKAL1, SLC30A8, and CDKN2B with type 2 diabetes mellitus in the Russian population. PeerJ., 5, e3414. doi:10.7717/peerj.3414 DOI: https://doi.org/10.7717/peerj.3414
Sabarneh, A., Ereqat, S., Cauchi, S., AbuShamma, O., Abdelhafez, M., Ibrahim, M., & Nasereddin, A. (2018). Common FTO rs9939609 variant and risk of type 2 diabetes in Palestine. BMC Med. Genet., 19 (1), 156. doi:10.1186/s12881-018-0668-8 DOI: https://doi.org/10.1186/s12881-018-0668-8
Kamura, Y., Iwata, M., Maeda, S., Shinmura, S., Koshimizu, Y., Honoki, H., ... Tobe, K. (2016). FTO gene polymorphism is associated with type 2 diabetes through its effect on increasing the maximum BMI in Japanese men. PLoS One, 11 (11), e0165523. doi:10.1371/journal.pone.0165523 DOI: https://doi.org/10.1371/journal.pone.0165523
Ghafarian-Alipour, F., Ziaee, S., Ashoori, M.R., Zakeri, M.S., Boroumand, M.A., Aghamohammadzadeh, N., ... Zarghami, N. (2018). Association between FTO gene polymorphisms and type 2 diabetes mellitus, serum levels of apelin and androgen hormones among Iranian obese women. Gene, 641, 361-366. doi:10.1016/j.gene.2017.10.082 DOI: https://doi.org/10.1016/j.gene.2017.10.082
Moller, D.E. (2000). Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol. Metab., 11 (6), 212-217. doi:10.1016/s1043-2760(00)00272-1 DOI: https://doi.org/10.1016/S1043-2760(00)00272-1
Lorenzo, M., Fernandez-Veledo, S., Vila-Bedmar, R., Garcia-Guerra, L., De Alvaro, C., & Nieto-Vazquez, I. (2008). Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J. Anim. Sci., 86 (14), E94-104. doi:10.2527/jas.2007-0462 DOI: https://doi.org/10.2527/jas.2007-0462
Kubaszek, A., Pihlajamaki, J., Punnonen, K., Karhapaa, P., Vauhkonen, I., & Laakso, M. (2003). The C-174G promoter polymorphism of the IL-6 gene affects energy expenditure and insulin sensitivity. Diabetes, 52 (2), 558-561. doi:10.2337/diabetes.52.2.558 DOI: https://doi.org/10.2337/diabetes.52.2.558
Yamashina, M., Kaneko, Y., Maesawa, C., Kajiwara, T., Ishii, M., Fujiwara, F., ... Satoh, J. (2007). Association of TNF-alpha gene promoter C-857T polymorphism with higher serum LDL cholesterol levels and carotid plaque formation in Japanese patients with type 2 diabetes. Tohoku J. Exp. Med., 211 (3), 251-258. doi:10.1620/tjem.211.251 DOI: https://doi.org/10.1620/tjem.211.251
Nadeem, A. (2017). Inter-ethnic variations in association of TNF-alpha G308a single nucleotide polymorphism with type 2 diabetes mellitus – a review. Journal of Diabetes, Metabolic Disorders & Control, 4 (2). doi: 10.15406/jdmdc.2017.04.00105 DOI: https://doi.org/10.15406/jdmdc.2017.04.00105