Silicone dioxide nano-particles enhance toxicity of lead on oxidative and nitro-oxidative stress

Authors

  • I. A. Bandas Ternopil State Medical University, Ternopil
  • M. I. Kulitska Ternopil State Medical University, Ternopil
  • T. Ya. Yaroshenko Ternopil State Medical University, Ternopil
  • M. M. Korda Ternopil State Medical University, Ternopil

DOI:

https://doi.org/10.11603/mcch.2410-681X.2017.v0.i3.8206

Keywords:

nanoparticles, silicon dioxide, lead, oxidative and nitro-oxidative stress, rats.

Abstract

Introduction. Nanoparticles are widely used in scientific research, industry and medicine. The established capability of nanoparticles to increase the transport of chemicals and drugs into cells and through the body barriers makes the possibility of potentiating the chemical contaminants toxicity in case of their simultaneous intake an urgent matter.

The aim of the study – to learn the effect of silicon dioxide nanoparticles on the ability of chemical lead acetate toxicant to cause oxidative and nitro-oxidative stress in blood serum and liver of experimental rats.

Research Methods. Experiments were conducted on 40 white outbred male rats, 150–160 g in weight, which were divided into 4 groups. Animals of the group (control) 1 were daily administered with saline solution intragastrically. The rats of the group 2 were administered with colloidal solution of silicon dioxide nanoparticles in a dose of 50 mg/kg of body weight. Animals of the group 3 were injected with lead acetate in aqueous solution in a dose of 20 mg/kg of body weight (expressed as lead), the group 4 – with solution of silicon dioxide nanoparticles with lead acetate daily during 3 weeks at the same doses. The total activity of NO-synthase, catalase, superoxide dismutase, NOx content, thiobarbituric acid reactive substances, oxidized modified proteins, reduced glutathione, ceruloplasmin and total serum antioxidant activity were determined in serum and liver. The obtained parameters were statistically processed.

Results and Discussion. It was proved that silicon dioxide nanoparticles did not influence the studied parameters considerably. The administration of lead acetate to rats caused significant changes of all indices. However, the maximum changes of the parameters were evidenced in the group of animals in cases of simultaneous administration of silicon dioxide nanoparticles and lead acetate. In that case, the content of thiobarbituric acid reactive substances, NOx, oxidized modified proteins, reduced glutathione, and superoxide dismutase activity in blood serum and liver homogenate of rats varied significantly compared with the parameters of the group of animals that were administered with the chemical toxicant only.

Conclusion. Silicon dioxide nanoparticles enhance the capability of the chemical lead acetate toxicant to cause oxidative and nitro-oxidative stress in blood serum and liver of the experimental rats.

Author Biography

M. I. Kulitska, Ternopil State Medical University, Ternopil

Тернопольский государственный медицинский университет имени И. Я. Горбачевского, Тернополь

References

Chekman, I.S. (2009). Nanochastynky: vlastyvosti ta perspektyvy zastosuvannia [Nanoparticles: properties and usage perspectives]. Ukrainskyi biokhimichnyi zhurnal – The Ukrainian Biochemistry Journal, 1 (81), 122-129 [in Ukrainian].

Fisichella, M., Dabboue, H., & Bhattacharyya, S. (2009).Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes.Toxicol. In Vitro, 23(4), 697-703.

Douroumis, D., Onyesom, I., Maniruzzaman, M. & Mitchell, J. (2013). Mesoporous silica nanoparticles in nanotechnology.Crit. Rev. Biotechnol., 33(3), 229-245 [PubMed].

Chekman, I.S., Kazak, L.I., Nitsak, O.V., & Voronin, Ye.F. (2010). Novi mozhlyvosti zastosuvannia nanochastynok kremniyu u medytsyni ta farmatsii [New possibilities of using silicon nanoparticles in medicine and pharmacy]. Visnyk farmakolohii ta farmatsii – Journal of Pharmacology and Pharmacy, 4, 8-14 [in Ukrainian].

Kilpelainen, M., Riikonen, J., Vlasova, M.A., Huotari, A., Lehto, V.P., Salonen, J., Herzig, K.H., Jarvinen, K. (2009). In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles.J. Control. Release, 137, 166-170.

Ksenofontova, O.I., Vasin, A.V., Yegorov, V.V., Bobyl, A.V., Soldatenkov, F.Yu., Terukov, Ye.I., Ulin, V.P., Ulin, N.V., & Kiselev, O.I. (2014). Poristyy kremniy i yego primeneniye v biologii i meditsine [Porous silicon and its usage in biology and medicine]. Zhurnal tekhnicheskoy fiziki – Journal of Technical Physics, 1 (84), 67-78 [in Russian].

Low, S.P., Williams, K.A., Canham, L.T., & Voelcker, N.H. (2006). Evaluation of mammalian cell adhesion on surface-modified porous silicon.Biomaterials, 27, 4538-4546.

Yang, X., Liu, J., He, H., Zhou, L., Gong, C., Wang, X., Yang, L., Yuan, J., Huang, H., He, L., Zhang, B.,& Zhuang, Z. (2010). SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part Fibre Toxicol., 19 (7;1), 1-10.

Ryman-Rasmussen, J.P., Riviere, J.E., & Monteiro Riviere, N.A. (2006).Penetration of intact skin by quantum dots with diverse physicochemical properties.Toxicol. Sci., 91, 159-165.

Vallhov, H., Qin, J., & Johansson, S.M. (2006). The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications.Nano Lett., 6, 1682-1686.

Trakhtenberh, I.M., Dmytrukha, N.M.,& Luhovskyi, S.P. (2015). Svynets – nebezpechnyi poliutant. Problema stara i nova [Lead is a dangerous pollutant. The problem is old and new.]. Suchasni problemy toksykolohii, kharchovoi ta khimichnoi bezpeky – Current Issues of Toxicology, Food and Chemical Safety, 3 (71), 14-24 [in Ukrainian].

Zhang, X., Sun, H., & Zhang, Z. (2007). Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere, 67(1), 160-166.

Sun, H., Zhang, X., & Zhang, Z. (2009). Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite. Environ. Pollut.,157 (4), 1165-1170.

Bandas, I.A., Kulitska, M.I., & Korda M.M. (2016). Vplyv nanochastynok dioksydu kremniu na hepatotoksychnist svyntsiu [The effect of silicon dioxide nanoparticles on the lead hepatotoxicity]. Medychna ta klinichna khimia – Medical and Clinical Chemistry, 2 (67) (18), 17-21[in Ukrainian].

Bandas, I.A., Kulitska, M.I., & Korda M.M. (2017). Strukturni zminy pechinky, nyrok ta selezinky shchuriv pry dii nanochastynok dioksydu kremniu ta atsetatu svyntsiu [Structural changes in liver, kidneys and spleen of rats affected by nanoparticles of silicon dioxide and lead acetate]. Visnyk problem biolohii i medytsyny – Journalof Problems in Biology and Medicine, 1 (135), 322-327 [in Ukrainian]

European convention for the protection of vertebrate animals used for experimental and other scientific purposes. – Council of Europe, Strasbourg, 1986. – 56 p.

Kozhemiakin, Yu.M., Khromov, O.S., Filonenko, M.A., & Saifetdinova, H.A. (2002). Naukovo-praktychni rekomendatsii z utrymannia laboratornykh tvaryn ta roboty z nymy [Scientific and practical recommendations for care and use of laboratory animals]. Kyiv: Avitsena [in Ukrainian].

Onischenko, G.G., Tutelian, V.A.,& Gmoshinskiy, I.V. (2011). Poryadok i metody otsenki vozdeystvia iskusstvennykh nanochastits i nanomaterialov na toksicheskoie deystvie khimicheskikh veshchestv: metodicheskie rekomendatsii MR 1.2.0054-11 [Order and methods for evaluation of the influence of artificial nanoparticles and nanomaterials on the toxicity of chemicals: methodological recommendations MR 1.2.0054-11]. Moscow: Federalnyy tsentr gigieny i epidemiologii Rospotrebnadzora [in Russian].

Ridnour, L., Sim, J.E. & Hayward, M. (2000). A spectrophotometric method for the direct detection and quantitation of nitric oxide, nitrite, and nitrate in cell culture media.Anal. Biochem.,281, 223-229.

Andreyeva, L.I., Kozhemyakin, L.A., & Kishkun A.A. (1988). Modifikatsiya metoda opredeleniya perekisey lipidov v teste s tiobarbiturovoy kislotoy [Modification of the method of lipid peroxides determination by the test with thiobarbituric acid]. Laboratornoye delo – Laboratory Work, 11, 41-43 [in Russian].

Meschyshen, I.F. (1998). Metod vyznachennia okysliuvalnoi modyfikatsii bilkiv plazmy (syrovatky) krovi [Method of determination of oxidative modification of plasma (blood serum) proteins]. Bukovynskyi medychnyi visnyk – BukovynianMedicalJournal, 1 (2), 156-158[in Ukrainian].

Koroliuk, M.A., Ivanova, L.I.,& Mayorova, I.G. (1988). Metod opredeleniya aktivnosti katalazy [Method of catalase activity determination]. Laboratornoye delo – Laboratory Work, 1, 16-19 [in Russian].

Ellman, G.L. (1959). Tissne sulfhydryl group.Arch. of Bioch. and Biophys.(82), 70-77.

Kolb, V.G., & Kamyshnikov, V.S. (1982).Spravochnik po klinicheskoy khimii [Manual of Clinical Chemistry]. Minsk: Belarus[in Russian].

Stock, J., Gutteridge, J.M. & Sharp, R.J. (1974). Assay using brain homogenate for measuring the antioxidant activity of biological fluids. Clin. Sci. and Mol. Med., 47, 215-222.

Stuehr, D.N., Kwon, N.S. & Nathan, C. (1991). Hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J. Biol. Chem., 266, 6259-6263.

Chevari, S., Chaba, I., & Sekei, Y. (1985). Rol superoksiddismutazy v okislitelnykh protsessakh kletki i metod opredeleniya yeye v biologicheskom materiale [Importance of superoxide dismutase in oxidative processes of a cell and method of its determination in biological material]. Laboratornoye delo – Laboratory Work, 11, 678-681 [in Russian].

Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass.Environ. Health Perspect., 112, 1058-1062.

Abayeva, L.F., Shumskiy, V.I., Petritskaya, E.N., Rogatkin, D.A., & Lyubchenko, P.N. (2010). Nanochastitsy i nanotekhnologii v meditsine segodnya i zavtra [Nanoparticles and nanotechnologies in medicine today and tomorrow]. Almanakh klinicheskoy meditsiny – Almanac of Clinical Medicine, 22, 10-16 [in Russian].

Chuyko, A.A. (Ed.). (2003). Meditsinskaya khimiya i klinicheskoye primenenie dioksida kremniya [Medical chemistry and clinical use of silicon dioxide]. Kyiv: Naukova dumka [in Russian].

Chekman, I.S., Hovorukha, M.O., & Doroshenko, A.M. (2011) Nanohenotoksykolohiia: vplyv nanochastynok na klitynu [Nanogenotoxicology: the influence of nanoparticles on the cell]. Ukrainskyi medychnyi chasopys – Ukrainian Medical Journal, 1 (81), I/II, 30-35 [in Ukrainian].

Sharma, B., Singh, S., Siddiqi, N.J. (2014). Biomedical implications of heavy metals inducedimbalances in redox systems.BioMed.Research International. Retrieved from: https://www.hindawi.com/journals/bmri/2014/640754/

Published

2017-11-01

How to Cite

Bandas, I. A., Kulitska, M. I., Yaroshenko, T. Y., & Korda, M. M. (2017). Silicone dioxide nano-particles enhance toxicity of lead on oxidative and nitro-oxidative stress. Medical and Clinical Chemistry, (3), 48–56. https://doi.org/10.11603/mcch.2410-681X.2017.v0.i3.8206

Issue

Section

ORIGINAL INVESTIGATIONS