Differences in the content of metallothinein in rodent brain under postnatal development and cadmium intoxication

Authors

  • H. N. Shiyntum OLES HONCHAR DNIPRO NATIONAL UNIVERSITY
  • G. A. Ushakova OLES HONCHAR DNIPRO NATIONAL UNIVERSITY

DOI:

https://doi.org/10.11603/mcch.2410-681X.2017.v0.i1.7677

Keywords:

metallothionein, brain, postnatal development, gerbil, rat, Cd.

Abstract

Introduction. Metal-binding metallothionein genes are found in a vast population of organisms. These proteins are non enzymatic and very rich in cysteine residues. The various metallothionein isoforms in different brain regions arguably change over time.

The aim of the study – evaluating the distribution of metallothionein in different brain regions of gerbils and Wistar rats at different stages of postnatal development (PND), under standard and low dose Cd-induced conditions.

Materials and Methods. 18 Mongolian gerbils and 36 Wistar rats were divided into 6 groups (n=6), by age and condition of experiment: groups 1, 2, 3, 4 – 1, 30, 90 and 180-days old were exposed to standard conditions; group 5 and 6 – 180-days old+0.1 or 1.0 µgµg Cd2+ per animal everyday for 36 days. The metallothionein content in the hippocampus, cerebellum, and thalamus were detected by the ELISA.

Results and Discussion. Obtained data was shown the dynamic of metallothionein distribution in different brain regions of gerbils and Wistar rats depending on the stage of postnatal development and functional capacities. The content of metallothionein in the hippocampus continually decreased in both animal types but the cerebella metallothionein distribution pattern was different from that of the hippocampus, but identical in both rodents, rising from day one before decreasing on day 30. The low levels of metallothionein under the influence of Cd were proportional to the doses administered.

Conclusions. The level of metallothionein in the brain varies depending on the stage of development of the functional capacities of the brain parts. The significant down-regulation of metallothionein in the investigated brain regions under Cd influence suggests that a decrease in metallothionein levels depends on the dose of Cd and on the time necessary for its accumulation.

Author Biography

H. N. Shiyntum, OLES HONCHAR DNIPRO NATIONAL UNIVERSITY

 

References

Yang, H., & Shu, Y. (2015). Cadmium transporters in the kidney and сadmium-induced nephrotoxicity. International Journal of Molecular Sciences, 16 (1), 1484-1494. doi:10.3390/ijms16011484

Kagi, J.H.R., & Vallee, B.L. (1961). Metallothionein: a cadmium and zinc-containing protein from equine renal cortex. The Journal of Biological Chemistry, 236 (9), 2435-2442. www.jbc.org/content/236/9/2435.long

Włostowski, T., Kozłowski, P., Łaszkiewicz-Tiszczenko, B.,Olen´ska, E., & Aleksandrowicz O. Accumulation of Cadmium in and its effect on the midgut gland of terrestrial snail helix pomatia L. from urban areas in Poland. (2014). Bull. Environ. Contam. Toxicol., 93 (5), 526-531.doi: 10.1007/s00128-014-1346-y

Li, Y., Yang, H., Liu, N., Luo J., Wang Q., & Wang, L. (2015). Cadmium accumulation and metallothionein biosynthesis in Cadmium-treated freshwater mussel anodontawoodiana. PLoS ONE 10 (2): e0117037. doi:10.1371/journal.pone.0117037

Coyle, P., Philcox, J.C., Carey, L.C., & Rofe, A.M. (2002). Metallothionein: the multipurpose protein. Cellular and Molecular Life Scinces, 59 (4), 627-647.doi: 10.1007/s00018-002-8454-2

Shiyntum, H.N., & Ushakovа, G.A. (2015). Protective/detoxicative function of metallothionein in the rat brain and blood induced by controlled cadmium doses. Visn. Dnipropetr. Univ. Ser. Biol. Med., 6 (2), 103-107.doi:10.15421/021519

Waalkes, M.P. (2003). Cadmium carcinogenesis. Mutation Research, 533, 107-120. doi:10.1016/j.mrfmmm.2003.07.011

Festing, S., & Wilkinson, R. (2007). The ethics of animal research. Talking Point on the use of animals in scientific research. EMBO Reports, 8 (6), 526-530. doi: 10.1038/sj.embor.7400993

Fomenko, O.Z., Ushakova, H.O., & Piyerzhynovskyi, S.H. (2011). Astroglial proteins in the rat brain in experimental chronic hepatitis condition and 2-oxoglutarate effect. Ukr. Biochem. Zh., 83 (1), 69-75. (In Ukrainian).

https://www.ncbi.nlm.nih.gov/pubmed/21800651

Choudhuri, S., Kramer, K.K., Berman, N.E.J., Dalton, T.P., Andrews, G.K., & Klaassen, C.D. (1995). Constitutive expression of metallothionein genes in mouse brain. Toxicology and Applied Pharmacology, 131 (1), 144-154.doi: 0041-008X/95

Ono, S.I., & Cherian, M.G. (1999). Regional distribution of metallothionein, zinc, and copper in the brain of different strains of rats. Biological Trace Elemements Research, 69 (2), 151-159.doi: 10.1007/BF02783866

Toda, C., Santoro, A., Kim, J. D., & Diano, S. (2017). POMC Neurons: From Birth to Death.Annual Review of Physiology, 79 (1), 209-236. doi: 10.1146/annurev-physiol-022516-034110

Pfisterer, U., & Khodosevich, K. Neuronal survival in the brain: neuron type-specific mechanisms. Cell Death &Disease, 8 (3), e2643.doi: 10.1038/cddis.2017.64

Klaassen, C.D., Liu, J., & Diwan, B.A. (2009). Metallothionein protection of cadmium toxicity. Toxicology and Applied Pharmacology, 238 (3), 215-220.doi: 10.1016/j.taap.2009.03.026

Nair, A.R., DeGheselle, O., Smeets, K., Van Kerkhove, E., & Cuypers, Ann. (2013). Cadmium-induced pathologies: where is the oxidative balance lost (or not)? International Journal of Molecular Sciences, 14, 6116-6143; doi:10.3390/ijms14036116

Wang, Y., Goodrich, J.M., Gillespie, B., Werner, R., Basu, N., & Franzblau, A. (2012). An investigation of modifying effects of metallothionein single-nucleotide polymorphisms on the association between mercury exposure and biomarker levels. Environ. Health Perspect, 12 (4), 530-534.doi: 10.1289/ehp.1104079

Kar, R., Garg, S., Halder, S., Galav, V., Chandra, N., & Mehndiratta, M. (2015). Cadmium exposure induces oxidative stress by decreasing expression of antioxidant enzymes in mice liver. International Journal of Clinical Biochemistry and Research, 2 (2), 89-96. https://www.researchgate.net/publication/282862744_CADMIUM_EXPOSURE_INDUCES_STRESS_BY_DECREASING_EXPRESSION_OF_ANTIOXIDANT_ENZYMES_IN_MICE_LIVER

Baird, S.K., Kurz, T., & Brunk, U.T. (2006). Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem. J., 394, 275-283. doi:10.1042/BJ20051143

Published

2017-04-28

How to Cite

Shiyntum, H. N., & Ushakova, G. A. (2017). Differences in the content of metallothinein in rodent brain under postnatal development and cadmium intoxication. Medical and Clinical Chemistry, (1), 5–11. https://doi.org/10.11603/mcch.2410-681X.2017.v0.i1.7677

Issue

Section

ORIGINAL INVESTIGATIONS