Optimization of human somatic cells cryopreservation protocols by polyethylene glycols

Authors

  • O. M. Perepelytsina
  • A. P. Ugnivenko
  • D. P. Burlaka
  • S. V. Bezugly
  • M. V. Sydorenko

DOI:

https://doi.org/10.11603/mcch.2410-681X.2016.v0.i3.6933

Keywords:

cryopreservation, vitrification, polyethylene glycol, cooling rate, cell survival, freezing protocols.

Abstract

Using of polyethylene glycol in optimization of human somatic cells of cryopreservation protocols was analyzed. Low molecular weight PEG as vitrification solution supplement exhibited a high cooling speed and provided cell survival in 200 % comparing with control. It allows recommending the use of low molecular weight PEG in vitrification environment for effective cell vitrification protocols.

References

Fahy, G. M., MacFarlane, D. R., Angell, C. A., & Meryman, H. T. (1984). Vitrification as an approach to cryopreservation. Cryobiology, 21, 407–426.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131 (5), 861–872.

Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., & Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol, 26(1), 101–106.

Rall, W. F., & Fahy, G. M. (1985). Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature, 313 (6003), 573–575.

Chamberlain, F. (2000). Vitrification Arrives! New Technology Preserves Patients without Ice Damage. Cryonics, 21(4), 4–9.

Bhat, S. N., Sharma, A., & Bhat, S. V. (2005). Vitrification and glass transition of water: insights from spin probe ESR. Phys Rev Lett, 95 (23), 695–702.

Wolfe, J., & Bryant, G. (2001). Cellular cryobiology: thermodynamic and mechanical effects. International Journal of Refrigeration, 24 (5), 438–450.

Collins English Dictionary – Complete and Unabridged, 12th Edition 2014.

Belous, A.M., & Gryshchenko, V.I. (1994). Cryobiology. Kyiv, Naukova Dumka, 431. (in russian)

Wowk, B. (2007). How cryoprotectants work. Cryonics, 28 (3), 3–7.

Wowk, B., Leitl, E., Rasch, C.M., Mesbah-Karimi, N., Harris, S.B., & Fahy, G.M. (2000). Vitrification enhancement by synthetic ice blocking agents, Cryobiology, 40, 228–236.

Wowk, B., & Fahy, G.M. (2002). Inhibition of bacterial ice nucleation by polyglycerol polymers. Cryobiology, 44, 14–23.

Bakaltcheva, I.B., Odeyale, C.O., & Spargo, B.J. (1996). Effects of alkanols, alkanediols and glycerol on red blood cell shape and hemolysis. Biochem Biophys Acta, 1280, 73–80.

Fahy, G.M., Wowk, B., Wu, J., & Paynter, S. (2004). Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology, 48, 22–35.

Fahy, G.M., Wowk, B., Wu, J., Phan, J., Rasch, C., Chang, A., & Zendejas, E. (2004). Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology, 48, 157–178.

Lane, M., Bavister, B.D., Lyons, E.A., & Forest, K.T. (1999). Containerless vitrification of mammalian oocytes and embryos: adapting a proven method for flash-cooling protein crystals to thecryopreservation of live cells, Nat. Biotechnol. 17, 1234–126.

Stokich, B., Osgood, Q., Grimm, D., Moorthy, S., Chakraborty, N., & Menze, M. (2014). Cryopreservation of hepatocyte (HepG2) cell monolayers: Impact of trehalose. Cryobiology, 69 (2), 281–290.

Mosmann T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxic assayas. J Immunol Methods, 65, 55–63.

Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42 (1), 59–66.

Parnaud, G., Corpet, D., & Payrastre, L. (2001). Cytostatic effect of polyethylene glycol on human colonic adenocarcinoma cells, Int. J. Cancer, 92, 63–69.

Shi, R. (2013). Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury, Neurosci. Bull., 29, 460–466.

Nehrt, A., Hamann, K., Ouyang, H., & Shi, R. (2010). Polyethylene glycol enhances axolemmal resealing following transection in cultured cells and in ex vivo spinal cord. Journal of neurotrauma, 27, 151–161.

Published

2016-11-21

How to Cite

Perepelytsina, O. M., Ugnivenko, A. P., Burlaka, D. P., Bezugly, S. V., & Sydorenko, M. V. (2016). Optimization of human somatic cells cryopreservation protocols by polyethylene glycols. Medical and Clinical Chemistry, (3), 5–12. https://doi.org/10.11603/mcch.2410-681X.2016.v0.i3.6933

Issue

Section

ORIGINAL INVESTIGATIONS