The role of m1-cholinergic receptors in associative cortex of young rats in the performing autonomous regulation of heart rate during hypoxic exposure
DOI:
https://doi.org/10.11603/mcch.2410-681X.2015.v17.i4.5675Keywords:
m1-cholinergic receptors, young rats, functional asymmetry.Abstract
It is known that human cholinergic transmission in the cerebral cortex required for cognitive and behavioral reactions. However, in the literature there is not enough experimental data on the role of m1‑cholinergic receptors in associative cortex in young rats with incubation in hypoxic environment under conditions of low atmospheric pressure, considering the functional asymmetry of the cerebral hemispheres. The aim of the experiment was to determine the functional consequences of blocking m1‑cholinergic receptors in the associative cortex in young rats with incubation in hypoxic environment under conditions of low atmospheric pressure. Functional consequences of blocking m1 cholinergic receptors in the associative cortex in young rats with incubation in hypoxic environment under conditions of low atmospheric pressure are different in the case of right-sided and left-sided application of pirenzepin.
References
Ermakova, L. N., & Ermakova, E. S. (2012). Vlyianye meteorolohycheskykh uslovyi na samochuvstvye cheloveka. Heohr. vestn. 2 (21), 45−52.
Potupchyk, T. V., Makarova, M. V., & Prakhyn, E. Y. (2011). Kryteryy adaptatsyy detei k vysokym uchebnym nahruzkam. Hyhyena y sanytaryia. 6, 41–47.
Siti, I., Baba, D., Abd. L., & Mutalib Siti I. (2010). Indoor air quality issues for non−industrial work place. IJRRAS. 5 (3), 235−244.
Verkhratsky A. (2005). Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol. Rev. 85 (1), 201–279.
Storozhuk V. M. (2009). Rol atsetylkholyna v moduliatsyy aktyvnosty neironov neokorteksa bodrstvuiushcheho
zhyvotnoho pry realyzatsyy ynstrumentalnoho ulovnoho refleksa. Neirofyzyolohyia. 41 (2),144–159.
Avignone, E., & Cherubini,, E. (1999). Muscarinic receptor modulation of GABA-mediated giant depolarizing potentials in the neonatal rat hippocampus. J. Physiol. 518 (1), 97–107.
Newman, E. L., Gupta, K., & Climer, J. R. (2012). Cholinergic modulation of cognitive processing: insights drawn from computational models. Front. Behav. Neurosci. 6 (24), 3089–3096.
Kimmerly, D., O’Leary, D., & Menon, R. (2005). Cortical regions associated with autonomic cardiovascular regulation during lower body negative pressure in humans. J. Physiol. 569 (1), 331–345.
Ozben T. (2002). Pathophysiology of cerebral ischemia: mechanisms involved in neuronal damage. Jugoslov. Med. Biohem. 21 (2), 89–90.
Leutyn, V. P., Boholepova, N. N., & Fokyna, V. F. (2004). Funktsyonalnaia asymmetryia mozgha y adaptatsyia / V. P. Leutyn // Funktsyonalnaia mezhpolusharnaia asymmetryia. Nauchnyi myr, 728.
Davis, S., Dennis, N., & Buchler, N. (2009). Assessing the effects of age on long white matter tracts using diffusion tensor tractography. Neuroimage. 46 (2), 530–541.
Grewe, V., Reithmeier, C., & Shindell, D. (2002). Dynamic-chemical coupling of the upper troposphere and lower stratosphere region. Chemosphere. 47 (8), 851–861.
Ballanyi K. (2004). Protective role of neuronal KATP channels in brain hypoxia. The Journal of Experimental Biology. 207 (18), 3201–3212.