PROSPECTS OF CREATING MEDICINAL PRODUCTS BASED ON MEDICINAL PLANT RAW MATERIALS OF CANNABIS SPECIES
DOI:
https://doi.org/10.11603/mcch.2410-681X.2025.i1.15433Keywords:
cannabis, tetrahydrocannabinol, cannabidiol, medicinal products, inflorescencesAbstract
Introduction. Cannabis has a long history of medicinal use, dating back thousands of years, and has historically been used to treat a variety of ailments. Following the prohibition of cannabis use in the 20th century, Western medical practice shifted from the use of botanical extracts and tinctures to a pharmacopeia that was largely composed of single-molecule therapeutics, and the establishment of strict rules for the testing and approval of new drugs in the highly competitive and lucrative pharmaceutical market.The aim of the study – to consider and evaluate all possible options for creating medicinal products based on medicinal plant raw materials of the Cannabis species.Research methods. The study data were obtained through publications from various scientific literature search engines.Results. Several pharmaceutical companies are working intensively to develop new drugs with isolated natural cannabis products, while others are focusing on studying the effects of crude extracts from cannabis inflorescences, which have recently proven superior to the use of a single molecule in medical treatment. It is vital to distinguish between cannabidiol (CBD) and CBD plus THC (tetrahydrocannabinol) formulations to ensure a clear understanding of the differences between active ingredients and formulations as they relate to specific applications. Scientists emphasize that cannabis is not a single drug, but rather a whole group of drugs, and the focus should be on creating cannabidiol-based drugs. A large body of pharmacological evidence supports the role of THC as the addictive agent in cannabis. THC produces the effects sought by recreational cannabis users. The inclusion of CBD in all forms of legally prescribed medical cannabis provides the basis for molecular mechanistic protection against addiction. Two single-molecule cannabinoid drugs (dronabinol and nabilone) are approved in the US, but no plant-based cannabinoid products. It is a common misconception that there is a difference in the effects of a single phytocannabinoid molecule (e.g., CBD) depending on whether it is synthetic or plant-based. The circumstances in which this may be true for botanical cannabinoid products versus synthetic products are limited to cases where one of the two substances contains impurities that contribute to the overall pharmacological or toxicological effect, or due to the inappropriate labeling of synthetic isomers as exact copies of naturally occurring cannabinoids.Conclusions. There is a need to develop clear, consistent, and targeted cannabinoid medicines. Whether they are herbal or single-molecule substances, these products must pass established standards of quality, safety, and efficacy before being approved for use.
References
Leonti M., Verpoorte R. Traditional Mediterranean and European herbal medicines. J. Ethnopharmacol. 2017. № 199. Р. 161–167.
Zairi A., Nouir S., NM H., Bennani M., Bergaoui I., Mtiraoui A., et al. Antioxidant, antimicrobial and the phenolic content of infusion, decoction and methanolic extracts of thyme and rosmarinus species. Curr Pharm Biotech. 2018. № 19 (7). Р. 590–599.
Saeidnia S., Gohari A.R., Manayi A. Reverse pharmacognosy and reverse pharmacology; two closely related approaches for drug discovery development. Curr Pharm Biotech. 2016. № 17 (11). Р. 1016–1022.
Choudhary N., Siddiqui M., Bi S., Khatoon S. Variation in preliminary phytochemicals screening of Cannabis sativa L. leaf, stem and root. Int. J. Pharmacogn. 2014. № 1. Р. 516–519.
Bandar H., Hijazi A., Rammal H., Hachem A., Saad Z., Badran B. Techniques for the extraction of bioactive compounds from Lebanese Urtica Dioica. Am. J. Phytomed. Clin. Ther. 2013. № 1. Р. 507–513.
Zuardi A.W. History of Cannabis as a medicine: a review. Brazilian Journal of Psychiatry. 2006. № 28. Р. 153–157.
Українська правда. Життя. Медичний канабіс – легальний. Що зміниться, коли запрацює новий закон? Українська правда. Життя. URL: https://life. pravda.com.ua/health/2023/12/21/258434/ (дата звернення: 25.10.2024).
Bonn-Miller M.O., ElSohly M.A., Loflin M.J.E., Chandra S., Vandrey, R. Cannabis and cannabinoid drug development: evaluating botanical versus single molecule approaches. International review of psychiatry (Abingdon, England). 2018. № 30 (3). Р. 277–284. https://doi.org/10. 1080/09540261.2018.1474730.
Mechoulam R. Hanus L. A historical overview of chemical research on cannabinoids. Chemistry and Physics of Lipids. 2000. № 108. Р. 1–13.
Koltai D. Namdar Cannabis phytomolecule “entourage”: from domestication to medical use. Trends Plant Sci. 2020. № 25. Р. 976–984. https://doi. org/10.1016/j.tplants.2020.04.007.
Abdollahi М., Sefidkon F., Calagari М., Mousavi М., Mahomoodally M.F. Impact of four hemp (Cannabis sativa L.) varieties and stage of plant growth on yield and composition of essential oils. Ind. Crop. Prod. 2020. № 155. Р. 112793. https://doi.org/10.1016/j. indcrop.2020.112793.
Bueno J., Greenbaum E.A. (-)-trans-Δ9- Tetrahydrocannabiphorol Content of Cannabis sativa Inflorescence from Various Chemotypes. J. Nat. Prod. 2021. № 84 (2). Р. 531–536. https://doi.org/10.1021/acs. jnatprod.0c01034.
Eržen M., Košir I.J., Ocvirk M., Kreft S., Čerenak A. Metabolomic Analysis of Cannabinoid and Essential Oil Profiles in Different Hemp (Cannabis sativa L.) Phenotypes. Plants (Basel). 2021. № 10 (5). Р. 966. Published 2021 May 12. https://doi.org/10.3390/ plants10050966.
Kornpointner C., Sainz Martinez А., Marinovic S., Haselmair-Gosch C., Jamnik Р., Schrцder К., Lцfke С., Halbwirth H. Chemical composition and antioxidant potential of Cannabis sativa L. Roots Ind. Crop. Prod. 2021. № 165. Р. 113422. https://doi.org/10.1016/j. indcrop.2021.113422.
Li J., Wang G., Qin Y., Zhang X., Wang H.F., Liu H., et al. Neuroprotective constituents from the aerial parts of Cannabis sativa L. subsp. sativa. RSC Adv. 2020. № 10 (53). Р. 32043–32049. Published 2020 Aug 28. DOI: 10.1039/d0ra04565a, https://doi.org/10.1039/d0ra04565a.
Nagy D.U., Cianfaglione K., Maggi F., Sut S., Dall'Acqua S. Chemical Characterization of Leaves, Male and Female Flowers from Spontaneous Cannabis (Cannabis sativa L.) Growing in Hungary. Chemistry & biodiversity. 2019. № 16 (3). Р. e1800562. https://doi. org/10.1002/cbdv.201800562.
Vergara D., Husche, E.L., Keepers K.G., Givens R.M., Cizek C.G., Torres A., Gaudino R., Kane N.C. Gene copy number is associated with phytochemistry in Cannabis sativa. AoB PLANTS. 2019. № 11 (6). Р. plz074. https://doi.org/10.1093/aobpla/plz074.
Burgel L. Hartung J., Graeff-Hцnninger S. Impact of different growing substrates on growth, yield and cannabinoid content of two Cannabis sativa L. genotypes in a pot culture. Horticulturae. 2020. № 6. Р. 62. https:// doi.org/10.3390/horticulturae604006
Saloner А., Bernstein N. Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Ind. Crop. Prod. 2021. № 167. Р. 113516. https://doi.org/10.1016/j.indcrop.2021.113516.
Wei X., Zhao X., Long S., Xiao Q., Guo Y., Qiu С., Qiu Н., Wang Y. Wavelengths of LED light affect the growth and cannabidiol content in Cannabis sativa L. Ind. Crop. Prod. 2021. № 165. Р. 113433. https://doi. org/10.1016/j.indcrop.2021.113433.
Kovalchuk I., Pellino M., Rigault P., van Velzen R., Ebersbach J., Ashnest J.R., et al. The Genomics of Cannabis and Its Close Relatives. Annual review of plant biology. 2020. № 71. Р. 713–739. https://doi.org/10.1146/ annurev-arplant-081519-040203.
Stack G.M., Toth J.A., Carlson C.H., Cala A.R., Rebecca M.I.M., Deanna L.W., et al. Season-long characterization of high-cannabinoid hemp (Cannabis sativa L.) reveals variation in cannabinoid accumulation, flowering time, and disease resistance. GCB Bioenergy. 2021. № 13. Р. 546–561. https://doi.org/10.1111/ gcbb.12793.
Mudge E.M., Brown P.N., Murch S.J. The Terroir of Cannabis: Terpene Metabolomics as a Tool to Understand Cannabis sativa Selections. Planta medica. 2019. № 85 (9–10). Р. 781–796. https://doi. org/10.1055/a-0915-2550.
Bernstein N., Gorelick J., Koch S. Interplay between chemistry and morphology in medical cannabis (Cannabis sativa L.) Ind. Crop. Prod. 2019. № 129. Р. 185–194. https://doi.org/10.1016/j.indcrop.2018.11.039.
Gorelick J., Bernstein N. Elicitation: an underutilized tool in the development of medicinal plants as a source of therapeutic secondary metabolites D.L. Sparks (Ed.), Advances in Agronomy, Academic Press. 2014. Р. 201–230. https://doi.org/10.1016/B978-0- 12-800138-7.00005-X.
Gertsch J. The Intricate Influence of the Placebo Effect on Medical Cannabis and Cannabinoids. Medical cannabis and cannabinoids. 2018. № 1 (1). Р. 60–64. https://doi.org/10.1159/000489291.
Russo E.B. Current Therapeutic Cannabis Controversies and Clinical Trial Design Issues. Frontiers in pharmacology. 2016. № 7. Р. 309. https://doi.org/10.3389/ fphar.2016.00309.
Stuart G.A., Smith F.P. Chinese materia medica. Part 1. Vegetable kingdom. Shanghai: Presbyterian mission, 1911. https://doi.org/10.5962/bhl.title.25114.
Chopra I.C., Chopra R.N. The use of Cannabis drugs in India Bull. Narc. 1957. № 9. Р. 4–29.
Kienzl M., Storr M., Schich, R. Cannabinoids and Opioids in the Treatment of Inflammatory Bowel Diseases. Clinical and translational gastroenterology. 2020. № 11 (1). Р. e00120. https://doi.org/10.14309/ ctg.0000000000000120.
Livingston S.J., Quilichini T.D., Booth J.K., Wong D.C.J., Rensing K.H., Laflamme-Yonkman J., et al. Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. The Plant journal: for cell and molecular biology. 2020. № 101 (1). Р. 37–56. https://doi.org/10.1111/tpj.14516.
Jin D., Dai K., Xie Z., Chen J. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Scientific reports. 2020. № 10 (1). Р. 3309. https://doi.org/10.1038/ s41598-020-60172-6.
World Health Organization (WHO). Cannabidiol (CBD) critical review report. In: Expert Committee on Drug Dependence Fortieth Meeting, Geneva, 2018.
Schlag A.K., Baldwin D.S., Barnes M., Bazire S., Coathup R., Curran H.V., et al. Medical cannabis in the UK: From principle to practice. Journal of psychopharmacology (Oxford, England). 2020. № 34 (9). Р. 931–937. https://doi.org/10.1177/0269881120926677.
Freeman A.M., Petrilli K., Lees R., Hindocha C., Mokrysz C., Curran H.V., et al. How does cannabidiol (CBD) influence the acute effects of delta-9-tetrahydrocannabinol (THC) in humans? A systematic review. Neuroscience and biobehavioral reviews. 2019. № 107. Р. 696–712. https://doi.org/10.1016/j.neubiorev.2019.09.036.
Overview. Cannabis-based medicinal products. Guidance. NICE. Homepage. NICE. URL: https://www. nice.org.uk/guidance/ng144 (date of access: 25.10.2024).
United Nations Office on Drugs and Crime. URL: https://www.unodc.org/pdf/convention_1971_en.pdf (date of access: 25.10.2024).
Curran H.V., Freeman T.P., Mokrysz C., Lewis D.A., Morgan C.J., Parsons L.H. Keep off the grass? Cannabis, cognition and addiction. Nature reviews. Neuroscience. 2016. № 17 (5). Р. 293–306. https://doi. org/10.1038/nrn.2016.2839.
Justinova Z., Goldberg S.R., Heishman S.J., Tanda G. Self-administration of cannabinoids by experimental animals and human marijuana smokers. Pharmacology, biochemistry, and behavior. 2005. № 81 (2). Р. 285–299. https://doi.org/10.1016/j.pbb.2005.01.026.
Stewart J.L., McMahon L.R. Rimonabant-induced Delta9-tetrahydrocannabinol withdrawal in rhesus monkeys: discriminative stimulus effects and other withdrawal signs. The Journal of pharmacology and experimental therapeutics. 2010. № 334 (1). Р. 347–356. https://doi.org/10.1124/jpet.110.168435.
Hindocha C., Freeman T.P., Schafer G., Gardener C., Das R.K., Morgan C.J., Curran H.V. Acute effects of delta-9-tetrahydrocannabinol, cannabidiol and their combination on facial emotion recognition: a randomised, double-blind, placebo-controlled study in cannabis users. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology. 2015. № 25 (3). Р. 325–334. https://doi.org/10.1016/j. euroneuro.2014.11.014.
Haney M., Malcolm R.J., Babalonis S., Nuzzo P.A., Cooper Z.D., Bedi G., et al. Oral Cannabidiol does not Alter the Subjective, Reinforcing or Cardiovascular Effects of Smoked Cannabis. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 2016. № 41 (8). Р. 1974–1982. https://doi.org/10.1038/npp.2015.367.
Everitt B.J., Robbins T.W. Drug Addiction: Updating Actions to Habits to Compulsions Ten Years On. Annual review of psychology. 2016. № 67. Р. 23–50. https://doi.org/10.1146/annurev-psych-122414-033457.
Freeman T.P., van der Pol P., Kuijpers W., Wisselink J., Das R.K., Rigter S., et al. Changes in cannabis potency and first-time admissions to drug treatment: a 16-year study in the Netherlands. Psychological medicine. 2018. № 48 (14). Р. 2346–2352. https://doi.org/10.1017/ S0033291717003877.
Tham M., Yilmaz O., Alaverdashvili M., Kelly M.E.M., Denovan-Wright E.M., Laprairie R.B. Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors. British journal of pharmacology. 2019. № 176 (10). Р. 1455–1469. https://doi.org/10.1111/ bph.14440.
Straiker A., Dvorakova M., Zimmowitch A., Mackie K. Cannabidiol inhibits endocannabinoid signaling in autaptic hippocampal neurons. Mol. Pharmacol. 2018. № 94. Р. 743–748.
Pertwee R. G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and delta9- tetrahydrocannabivarin. Br. J. Pharmacol. 2008. № 153. Р. 199–215.
Muniyappa R., Sable S., Ouwerkerk R., Mari A., Gharib A.M., Walter M., et al. Metabolic effects of chronic cannabis smoking. Diabetes care. 2013. № 36 (8). Р. 2415–2422. https://doi.org/10.2337/dc12-2303.
Murillo-Rodrнguez E., Palomero-Rivero M., Millбn-Aldaco D., Mechoulam R., Drucker-Colнn R. Effects on sleep and dopamine levels of microdialysis perfusion of cannabidiol into the lateral hypothalamus of rats. Life sciences. 2011. № 88 (11–12). Р. 504–511. https://doi.org/10.1016/j.lfs.2011.01.013.
Renard J., Loureiro M., Rosen L. G., Zunder J., de Oliveira C., Schmid S., et al. Cannabidiol Counteracts Amphetamine-Induced Neuronal and Behavioral Sensitization of the Mesolimbic Dopamine Pathway through a Novel mTOR/p70S6 Kinase Signaling Pathway. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2016. № 36 (18). Р. 5160–5169. https://doi.org/10.1523/JNEUROSCI.3387-15.2016.
Argueta D.A., Ventura C.M., Kiven S., Sagi,V., Gupta K. A Balanced Approach for Cannabidiol Use in Chronic Pain. Frontiers in pharmacology. 2020. № 11. Р. 561. https://doi.org/10.3389/fphar.2020.00561.
Freeman T.P., Hindocha C., Baio G., Shaban N.D.C., Thomas E.M., Astbury D., et al. Cannabidiol for the treatment of cannabis use disorder: a phase 2a, double-blind, placebo-controlled, randomised, adaptive Bayesian trial. The lancet. Psychiatry. 2020. № 7 (10). Р. 865–874. https://doi.org/10.1016/S2215-0366(20)30290-X.
Fattore L., Fratta W. Beyond THC: The New Generation of Cannabinoid Designer Drugs. Frontiers in behavioral neuroscience. 2011. № 5. Р. 60. https://doi. org/10.3389/fnbeh.2011.00060.
Vandrey R., Dunn K.E., Fry J.A., Girling E.R. A survey study to characterize use of Spice products (synthetic cannabinoids). Drug and alcohol dependence. 2012. № 120 (1–3). Р. 238–241. https://doi.org/10.1016/j. drugalcdep.2011.07.011.
Pertwee R.G., Howlett A.C., Abood M.E., Alexander S.P., Di Marzo V., Elphick M.R., et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacological reviews. 2010. № 62 (4). Р. 588–631. https://doi.org/10.1124/pr.110.003004.
Russo E.B., McPartland J.M. Cannabis is more than simply delta(9)-tetrahydrocannabinol. Psychopharmacology. 2003. № 165 (4). Р. 431–434. https://doi.org/10.1007/s00213-002-1348-z.
Ben-Shabat S., Fride E., Sheskin T., Tamiri T., Rhee M.H., Vogel Z., et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. European journal of pharmacology. 1998. № 353 (1). Р. 23–31. https://doi.org/10.1016/s0014-2999(98)00392-6.
Mechoulam R., Hanus L. A historical overview of chemical research on cannabinoids. Chemistry and physics of lipids. 2000. № 108 (1–2). Р. 1–13. https://doi. org/10.1016/s0009-3084(00)00184-5.
Fowler C.J. Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents. Non-psychoactive cannabinoids, 'entourage' compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid pyschotropic effects. Brain research. Brain research reviews. 2003. № 41 (1). Р. 26–43. https://doi.org/10.1016/s0165-0173(02)00218-7.
Sanchez-Ramos J. The entourage effect of the phytocannabinoids. Annals of neurology. 2015. № 77 (6). Р. 1083. https://doi.org/10.1002/ana.24402.
Carlini E.A., Karniol I.G., Renault P.F., Schuster C.R. Effects of marihuana in laboratory animals and in man. British journal of pharmacology. 1974. № 50 (2). Р. 299–309. https://doi.org/10.1111/j.1476-5381.1974.tb08576.x.
Russo E.B. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. British journal of pharmacology. 2011. № 163 (7). Р. 1344–1364. https://doi.org/10.1111/j.1476-5381.2011.01238.x.
Wachtel S.R., ElSohly M.A., Ross S.A., Ambre J., de Wit H. Comparison of the subjective effects of Delta(9)-tetrahydrocannabinol and marijuana in humans. Psychopharmacology. 2002. № 161 (4). Р. 331–339. https://doi.org/10.1007/s00213-002-1033-2.
Haney M., Gunderson E.W., Rabkin J., Hart C.L., Vosburg S.K., Comer, S.D., Foltin R.W. Dronabinol and marijuana in HIV-positive marijuana smokers. Caloric intake, mood, and sleep. Journal of acquired immune deficiency syndromes. 2007. № 45 (5). Р. 545–554. https://doi.org/10.1097/QAI.0b013e31811ed205.
O'Neil M.E., Nugent S.M., Morasco B.J., Freeman M., Low A., Kondo K., et al. Benefits and Harms of Plant- Based Cannabis for Posttraumatic Stress Disorder: A Systematic Review. Annals of internal medicine. 2017. № 167 (5). Р. 332–340. https://doi.org/10.7326/M17-0477.
Cannabis-In-Cachexia-Study-Group, Strasser F., Luftner D., Possinger K., Ernst G., Ruhstaller T., et al. Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: a multicenter, phase III, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-In-Cachexia-Study-Group. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2006. № 24 (21). Р. 3394–3400. https://doi.org/10.1200/JCO.2005.05.1847.
Bonn-Miller M.O., ElSohly M.A., Loflin M.J.E., Chandra S., Vandrey R. Cannabis and cannabinoid drug development: evaluating botanical versus single molecule approaches. International review of psychiatry (Abingdon, England). 2018. № 30 (3). Р. 277–284. https://doi.org/10. 1080/09540261.2018.1474730.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Medical and Clinical Chemistry

This work is licensed under a Creative Commons Attribution 4.0 International License.