THE IMPACT OF H2S METABOLISM MODULATORS ON VISFATIN, ADIPONECTIN SERUM LEVELS AND LIPIDS SERUM SPECTRUM IN RATS WITH EXPERIMENTAL OBESITY

Authors

  • О. P. Bobetska M. PYROHOV VINNYTSIA NATIONAL MEDICAL UNIVERSITY
  • N. V. Zaichko M. PYROHOV VINNYTSIA NATIONAL MEDICAL UNIVERSITY

DOI:

https://doi.org/10.11603/mcch.2410-681X.2023.i4.14362

Keywords:

hydrogen sulfide, оbesity, аdipokines, dyslipidemia, modulators

Abstract

Introduction. Оbesity appears to be an important determinant for multimorbidity patterns with cardiovascular diseases among them. Adipose tissue produces a variety of adipokines with proinflammatory, proatherogenic, adipogenic properties but on the other hand possess antiatherogenic and cardioprotective activity. The role of certain adipokines, visfatin, in particular, in obesity comorbidity pathogenesis is quite controversial. Bioregulator, capable to perform cardioprotective effect, hydrogen sulfide (H2S) is synthesized by heart, vessels, perivascular and visceral adipose tissue. H2S and adipokines possible correlations remain unexplored and are interesting in under­standing.

The aim of the study – to establish the effect of different H2S metabolism pathways modulators on visfatin, adiponectin serum levels and lipids serum spectrum in rats with experimental obesity.

Research methods. An experiment was carried out on 70 white non-linear male rats. Stages of the experiment complied with general bioethical principles (Strasburg,1986, Kyiv, 2001). Experimental obesity (EO) was inducted by high-calorie diet applying (4.33 kcal/g, 39.5 % of fats) during 10 weeks. Rats of the control group were fed by a standard diet (2.71 kcal/g, 10.8 % of fats). Over a time interval of 8–10-th weeks of the experimental rats with EO of 5 groups underwent an administration of H2S metabolism modulators – propargylglycine (PPG, 50 mg/kg), NaHS (3 mg/kg), zinc sulfate (124 mg/kg), sodium thiosulfate (300 mg/kg), α-lipoic acid (100 mg/kg). Body mass index (BMI), obesity index (OI), H2S, visfatin, adiponectin serum levels, lipid serum spectrum were measured. IBM Statistics SPSS 26 was applied for the data analysis. The significance of the differences was assessed by the Mann-Whitney U test at a significance level of p<0.05.

Results and Discussion. At the end of the 10-th experimental week BMI and IO elevating in rats fed by high-calorie diet was revealed (1,4-1,6-fold, р<0,001, comparing with the control). Obesity rats with PPG intake demonstrated more notable enhancement of somatometric parameters, while rats administered NaHS and cofactors of H2S metabolism (α-lipoic acid, zinc sulfate, sodium thiosulfate) showed milder somatometric changes. Rats with EO manifested an increased visfatin serum level, but decreased adiponectin and H2S serum levels with significant correlation to BMI and IO gain, proatherogenic lipid profile disorders. PPG deepened the severity of dysadipokinemia and dyslipidemia in animals with EO while NaHS and cofactors of H2S metabolism provoked a decrease in visfatin level, elevation of adiponectin level, downplayed dyslipidemia. The greatest corrective effect was performed by either α-lipoic acid or zinc sulfate, less significant changes were caused by sodium thiosulfate. EO was associated with H2S and visfatin levels reverse correlation and positive correlation with adiponectin level (r= -0,67 and 0,65, р<0,001).

Conclusions. H2S is involved in adipokine serum level regulation in obesity. Endogenous H2S elevated level is associated with dysadipokinemia and dyslipidemia level out, reducing of visceral obesity, whereas inhibition of H2S synthesis aggravates mentioned metabolic disturbances and enchances adipogenesis. α-Lipoic acid and zinc sulfate provide the most pronounced corrective effect on H2S and adipokine in obesity.

References

Ansari, S., Haboubi, H., & Haboubi, N. (2020). Adult obesity complications: challenges and clinical impact. Therapeutic advances in endocrinology and metabolism, 11, 1-14, doi:10.1177/2042018820934955 DOI: https://doi.org/10.1177/2042018820934955

Dramé, M., & Godaert, L. (2023). The obesity paradox and mortality in older adults: a systematic review. Nutr., 15(7), 17-80. doi:10.3390/nu15071780 DOI: https://doi.org/10.3390/nu15071780

Sørensen, T.I.A., Martinez, A.R., & Jørgen­sen, T.S.H. (2022) Epidemiology of obesity. Handb Exp Pharmacol., 274, 3-27. doi: 10.1007/164_2022_581. DOI: https://doi.org/10.1007/164_2022_581

Farkhondeh, T., Llorens, S., Pourbagher-Shah­ri, A.M., Ashrafizadeh, M., Talebi, M., Shakibae, I.M., … & Samarghandian, S. (2020). An overview of the role of adipokines in cardiometabolic diseases. Molecules, 25(21), 5218. doi:10.3390/molecules25215218. DOI: https://doi.org/10.3390/molecules25215218

Mechanick, J.I., Farkouh, M.E., Newman, J.D., & Garvey, W.T. (2020). Cardiometabolic-based chronic disease, adiposity and dysglycemia drivers. Journal of the American College of Cardiology, 75(5), 525-538. doi:10.1016/j.jacc.2019.11.044 DOI: https://doi.org/10.1016/j.jacc.2019.11.044

Erten, M. (2021). Visfatin as a promising marker of cardiometabolic risk. Acta Cardiol Sin., 37(5), 464-472. doi:10.6515/ACS.202109_37(5).20210323B.

Luo, J., He, Z., Li, Q., Lv, M., Cai, Y., Ke, W., Niu, X., & Zhang, Z. (2023). Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med., 10, 1235953. doi:10.3389/fcvm.2023.1235953 DOI: https://doi.org/10.3389/fcvm.2023.1235953

Dakroub, A., Nasser, S., Younis, N., Bhagani, H., Al-Dhaheri, Y., Pintus, G.,…& Eid, A.H. (2020). Visfatin: a possible role in cardiovasculo-metabolic disorders. Cells, 9(11), 24-44. doi:10.3390/cells9112444 DOI: https://doi.org/10.3390/cells9112444

Wang, P., Xu, T.Y., Guan, Y.F., Su, D.F., Fan, G.R., & Miao, C.Y. (2009) Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc Res., 81(2), 370-380. doi:10.1093/cvr/cvn288. DOI: https://doi.org/10.1093/cvr/cvn288

Chang, L., Yang, R., Wang, M., Liu, J., Wang, Y., Zhang, H.,…& Li, Y.(2012). Angiotensin II type-1 receptor-JAK/STAT pathway mediates the induction of visfatin in angiotensin II-induced cardiomyocyte hypertrophy. Am. J. Med. Sci., 343(3), 220-226. doi:10.1097/MAJ. 0b013e31822993ff DOI: https://doi.org/10.1097/MAJ.0b013e31822993ff

Yamawaki, H., Hara, N., Okada, M., & Hara, Y. (2009) Visfatin causes endothelium-dependent relaxation in isolated blood vessels. Biochem. Biophys. Res. Com­mun., 383, 503-508. doi:10.1016/j.bbrc.2009.04.074 DOI: https://doi.org/10.1016/j.bbrc.2009.04.074

Akcabag, E., Bayram, Z., Kucukcetin, I.O., Uzun, G., Ozdem, S., & Ozdem, S. S. (2021). Functional effects of visfatin in isolated rat mesenteric small resistance arteries. European Journal of Pharmacology, 908, 174333. doi:10.1016/j.ejphar.2021.174333 DOI: https://doi.org/10.1016/j.ejphar.2021.174333

Kolluru, G.K., Shackelford, R.E., Shen, X., Dominic, P.& Kevil, C.G. (2023). Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol., 20, 109-125. doi:10.1038/s41569-022-00741-6 DOI: https://doi.org/10.1038/s41569-022-00741-6

Kang, S.C., Sohn, E.H., Lee, S.R. (2020). Hydrogen sulfide as a potential alternative for the treat­ment of myocardial fibrosis. Oxid Med Cell Longev., 2020, 4105382. doi:10.1155/2020/4105382 DOI: https://doi.org/10.1155/2020/4105382

Yang, G., Ju, Y., Fu, M., Zhang, Y., Pei, Y.…& Racine, M., (2018). Cystathionine gamma-lyase/hydro­gen sulfide system is essential for adipogenesis and fat mass accumulation in mice. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1863(2), 165-176. doi:10.1016/j.bbalip.2017.11.008 DOI: https://doi.org/10.1016/j.bbalip.2017.11.008

Comas, F., & Moreno-Navarrete, J.M. (2021). The impact of H2S on obesity-associated metabolic disturbances. Antioxidants (Basel)., 10(5), 633. doi:10. 3390/antiox10050633 DOI: https://doi.org/10.3390/antiox10050633

Blazhchenko V.V., Zaichko, N.V. (2022). [The effect of zinc sulfate, sodium thiosulfate, lipoic acid, taurine on the expression of enzymes of hydrogen sulfide synthesis, mediators of inflammation, fibrogenesis in the kidneys of rats with diet-induced obesity]. Bulletin of Problems in Biology and Medicine, 1 (2), 114-125. [in Ukrainian]. doi:10.29254/2077–4214–2022–2–1–164-114-125 DOI: https://doi.org/10.29254/2077-4214-2022-2-1-164-114-125

Novelli, E.L., Diniz, Y.S., Galhardi, C.M., Ebaid, G.M., Rodrigues, H.G., Mani, F., … & Novelli Filho, J.L. (2007). Anthropometrical parameters and mar­kers of obesity in rats. Laboratory Animals, 41 (1), 111-119. doi:10.1258/002367707779399518 DOI: https://doi.org/10.1258/002367707779399518

Anyanwu, A. (2013). Impact of Anthocleista vogelii root bark ethanolic extract on weight reduction in high carbohydrate diet induced obesity in male wistar rats. African Journal Of Biochemistry Research, 7 (11), 225-232. doi:10.5897/ajbr2013.0733 DOI: https://doi.org/10.5897/AJBR2013.0733

Zhu, Y.Z., Wang, Z.J., Ho, P., Loke, Y.Y., Zhu, Y.C., Huang, S.H. …& Moore, P.K. (2007). Hydrogen sulfide and its possible roles in myocardial ischemia in expe­rimental rats. J. Appl. Physiol., 102 (1), 261-268. doi:10.1152/japplphysiol.00096.2006 DOI: https://doi.org/10.1152/japplphysiol.00096.2006

Moon, H.U., Ha, K.H., Han, S.J., Kim, H.J., & Kim, D.J. (2018) The association of adiponectin and visceral fat with insulin resistance and β-cell dysfunction. J. Korean Med. Sci., 34 (1), e7. doi:10.3346/jkms.2019. 34.e7 DOI: https://doi.org/10.3346/jkms.2019.34.e7

Zheng, L.Y., Xu, X., Wan, R.H., Xia, S., Lu, J., & Huang, Q. (2019) Association between serum visfatin levels and atherosclerotic plaque in patients with type 2 diabetes. Diabetol. Metab. Syndr., 11, 60. doi:10.1186/s13098-019-0455-5. DOI: https://doi.org/10.1186/s13098-019-0455-5

Rajh Hamza Al-Kraity, W., & Jawad, M.M. (2019). Assessment of visfatin level in patients with coronary heart disease. Journal of Physics: Conference Series, 1294(6), 062033. doi:10.1088/1742-6596/ 1294/6/062033 DOI: https://doi.org/10.1088/1742-6596/1294/6/062033

Hafiane, A., & Daskalopoulou, S.S. (2020) Adiponectin's mechanisms in high-density lipoprotein biogenesis and cholesterol efflux. Metabolism., 113, 154393. doi:10.1016/j.metabol.2020.154393. DOI: https://doi.org/10.1016/j.metabol.2020.154393

Gasbarrino, K., Hafiane, A., Gianopoulos, I., Zheng, H., Mantzoros, C.S., Daskalopoulou, & S.S. (2023) Relationship between circulating adipokines and cholesterol efflux in subjects with severe carotid atherosclerosis. Metabolism, 140, 155381. doi:10.1016/j.metabol.2022.155381. DOI: https://doi.org/10.1016/j.metabol.2022.155381

Asghari, S., Hosseinzadeh-Attar, M.J., Alipoor, E., Sehat, M., & Mohajeri-Tehrani, M.R. (2019) Effects of zinc supplementation on serum adiponectin concentration and glycemic control in patients with type 2 diabetes. J Trace Elem. Med. Biol.,55, 20-25. doi:10.1016/j.jtemb.2019.05.007. DOI: https://doi.org/10.1016/j.jtemb.2019.05.007

Haghighatdoost, F., Gholami, A., & Hariri, M. (2020) Alpha-lipoic acid effect on leptin and adiponectin concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Pharmacol., 76(5), 649-657. doi:10.1007/s00228-020-02844-w. DOI: https://doi.org/10.1007/s00228-020-02844-w

Chen, N.X., O'Neill, K., Akl, N.K., & Moe, S.M. (2014) Adipocyte induced arterial calcification is preven­ted with sodium thiosulfate. Biochem Biophys Res Commun., 449(1), 151-156. doi:10.1016/j.bbrc.2014.05.005. DOI: https://doi.org/10.1016/j.bbrc.2014.05.005

Qiu, X., Liu, K., Xiao, L., Jin, S., Dong, J., Teng, X., … & Wu Y. (2018) Alpha-lipoic acid regulates the autophagy of vascular smooth muscle cells in diabetes by elevating hydrogen sulfide level. Biochim Biophys Acta Mol Basis Dis., 1864(11), 3723-3738. doi:10.1016/j.bbadis.2018.09.005. DOI: https://doi.org/10.1016/j.bbadis.2018.09.005

Sen, U., Vacek, T.P., Hughes, W.M., Kumar, M., Moshal, K.S., Tyagi, N., …&Tyagi, S.C. (2008) Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation. Pharmacology, 82(3), 201-213. doi:10.1159/000156486. DOI: https://doi.org/10.1159/000156486

Morton, N.M., Beltram, J., Carter, R.N., Michai­lidou, Z., Gorjanc, G., McFadden C., … & Horvat S. (2016) Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness. Nat. Med., 22(7), 771-779. doi:10.1038/nm.4115. DOI: https://doi.org/10.1038/nm.4115

Kruithof, P.D., Lunev, S., Aguilar Lozano, S.P., de Assis Batista, F., Al-Dahmani, Z.M., Joles, J.A., … & van Goor H. (2020) Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases. Biochim. Biophys. Acta Mol. Basis Dis., 1866(6), 165716. doi:10.1016/j.bbadis.2020.165716. DOI: https://doi.org/10.1016/j.bbadis.2020.165716

Published

2024-01-09

How to Cite

Bobetska О. P., & Zaichko, N. V. (2024). THE IMPACT OF H2S METABOLISM MODULATORS ON VISFATIN, ADIPONECTIN SERUM LEVELS AND LIPIDS SERUM SPECTRUM IN RATS WITH EXPERIMENTAL OBESITY. Medical and Clinical Chemistry, (4), 5–13. https://doi.org/10.11603/mcch.2410-681X.2023.i4.14362

Issue

Section

ORIGINAL INVESTIGATIONS