EFFECT OF GADOLINIUM ORTHOVANADATE NANOPARTICLES WITH EUROPIUM GDVO4:EU3+ WITH AND WITHOUT PREVIOUS UV IRRADIATION ON THE GENERATION OF REACTIVE OXYGEN SPECIES IN RAT LEUKOCYTES
DOI:
https://doi.org/10.11603/mcch.2410-681X.2023.i3.14107Keywords:
gadolinium orthovanadate, nanoparticles, oncology, reactive oxygen species, flow cytometryAbstract
Introduction. Considering the significant rate of oncopathologies spreading, search and research of methods for increasing the effectiveness and safety profile of anticancer therapy is relevant. One of the promising radiosensitizers are nanoparticles, including gadolinium orthovanadate with europium. However, data on their cytotoxicity are quite limited, which determines the feasibility of their further study.
The aim of the study – to evaluate the generation of reactive oxygen species (ROS) in rats peripheral blood leukocytes under the influence of GdVO4:Eu3+ nanoparticles (oral administration).
Research methods. The WAG rats were used in our study, which were divided into 3 groups that received drinking water (group 1); aqueous solution of GdVO4:Eu3+ at a dose of 50 μg/kg of body weight without UV irradiation (group 2) and with previous UV irradiation (group 3) for 14 days intragastrically. In the suspension of leukocytes, the generation of ROS was determined using the fluorescent probe 2,7-dichlorodihydrofluorescein diacetate on a flow cytometer. The obtained results were processed statistically.
Results and Discussion. The results indicate uneven generation of ROS in leukocytes: a significant intensification of ROS production was observed in group 2, compared to the control. Previous UV irradiation of GdVO4:Eu3+ nanoparticles led to a decrease in the fluorescence index (indication of ROS generation) (group 3), compared to the other two groups. It is obvious that the determining factor is not only the UV irradiation of nanoparticles, but also the duration and method of administration of the nanoparticles themselves.
Conclusions. The results of our research indicate that GdYVO4:Eu3+ nanoparticles administered orally in rats at a dose of 50 μg/kg of body weight without previous UV irradiation are able to reliably increase the generation of ROS in leukocytes, while the use of nanoparticles with a similar dose with previous UV irradiation, on the contrary, is accompanied by a decrease in ROS production, even compared to the control.
References
Wild, C.P. (2019) ‘The global cancer burden: Necessity is the mother of prevention’, Nature Reviews Cancer, 19 (3), 123-124. DOI:10.1038/s41568-019-0110-3. DOI: https://doi.org/10.1038/s41568-019-0110-3
Chen, H.H.W., Kuo, M.T. (2017) Improving radiotherapy in cancer treatment: Promises and challenges, Oncotarget, 8 (37), 62742-62758. doi:10.18632/oncotarget.18409. DOI: https://doi.org/10.18632/oncotarget.18409
Garibaldi, C., Jereczek-Fossa, B.A., Marvaso, G., Dicuonzo, S., Rojas, D.P., Cattani, F., Starzyńska, A., Ciardo, D., Surgo, A., Leonardi, M.C., Ricotti, R. (2017). Recent advances in Radiation oncology. Ecancer medical science, 11. doi:10.3332/ecancer.2017.785. DOI: https://doi.org/10.3332/ecancer.2017.785
Gargioni, E., Schulz, F., Raabe, A., Burdak-Rothkamm, S., Rieckmann, T., Rothkamm, K. (2016). Targeted nanoparticles for tumour radiotherapy enhancement the long dawn of a golden era? Annals of Translational Medicine, 4(24), 523-523. DOI:10.21037/atm.2016.12.46. DOI: https://doi.org/10.21037/atm.2016.12.46
Retif, P., Pinel, S., Toussaint, M., Frochot, C., Chouikrat, R., Bastogne, T., Barberi-Heyob, M. (2015). Nanoparticles for radiation therapy enhancement: The key parameters. Theranostics, 5 (9), 1030-1044. DOI:10.7150/thno.11642. DOI: https://doi.org/10.7150/thno.11642
Kwatra, D., Venugopal, A., Anant, S. (2013). Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Trans. Cancer Res., 2 (4), 330-342. doi:10.21037/1550
Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., Wu, S., Deng, Y., Zhang, J., & Shao, A (2020). Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Frontiers in Molecular Biosciences, 7. DOI:10.3389/fmolb.2020.00193. DOI: https://doi.org/10.3389/fmolb.2020.00193
Mishra, K., Singh, A., Pandey, A., Mishra, K.P. (2014). Reactive oxygen species as mediator of tumor radiosensitivity. Journal of Cancer Research and Therapeutics, 10 (4), 811. DOI:10.4103/0973-1482. 146073. DOI: https://doi.org/10.4103/0973-1482.146073
Verry, C., Sancey, L., Dufort, S., Le Duc G., Mendoza, C., Lux, F., Grand, S., Arnaud, J., Quesada, J.L., Villa, J., Tillement, O., Balosso, J. (2019). Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: Nano-Rad, a phase I study protocol. BMJ Open, 9 (2). DOI:10.1136/bmjopen-2018-023591. DOI: https://doi.org/10.1136/bmjopen-2018-023591
Zhulikova, M.V. Myroshnychenko, M.S., Nakonechna, O.A., Zhulikov, O.O., Pustova, N.O., Bibichenko, V.O., Lytvynenko, O.Yu., Kucheriavchenko, M.O. (2023). Reactive oxygen species generation by blood leucocytes of rats with polycystic ovary syndrome under the conditions of intermittent cold exposure. Wiadomości Lekarskie, 76 (7), 1670-1676. DOI:10.36740/wlek202307123. DOI: https://doi.org/10.36740/WLek202307123
Sancey, L., Lux, F., Kotb, S., Roux, S., Dufort, S., Bianchi, A., Crémillieux, Y., et al. (2014). The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. The British Journal of Radiology, 87(1041), 20140134. DOI:10.1259/bjr.20140134. DOI: https://doi.org/10.1259/bjr.20140134
Yefimova, S.L. Maksimchuk, P.O., Hubenko, K.O., Omielaieva, V.V., Kavok, N.S., Klochkov, V.K., Malyukin, Y.V., Semynozhenko, V.P. (2020). Light-triggered redox activity of gdyvo4:eu3+ nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 242, 118741. DOI:10.1016/j.saa.2020.118741. DOI: https://doi.org/10.1016/j.saa.2020.118741
Maksimchuk, P.O., Yefmova, S.L., Hubenko, K.O., Omielaieva, V.V., Kavok, N.S., Klochkov, V.K., Sorokin, O.V., Malyukin, Y.V. (2020). Dark reactive oxygen species generation in Revo4:Eu3+ (re = gd, y) nanoparticles in aqueous solutions. The Journal of Physical Chemistry C, 124 (6), 3843-3850. DOI:10.1021/acs.jpcc.9b10143. DOI: https://doi.org/10.1021/acs.jpcc.9b10143
Babenko, O., Vasylyeva, I., Nakonechna, O., Popova, L., Voitenko, S., Pustova, N. (2022). The viability of leukocytes and reactive oxygen species generation by them in rats with chronic colitis. Wiad Lek., 75 (9 pt 2). 2270-2274. DOI: https://doi.org/10.36740/WLek202209216
Onishchenko, A., Myasoedov, V., Yefimova, S., Nakonechna, O., Prokopyuk, V., Butov, D. et al. (2021). UV light-activated gdyvo4:eu3+ nanoparticles induce reactive oxygen species generation in leukocytes without affecting erythrocytes in vitro. Biological Trace Element Research, 200 (6), 2777-2792. DOI:10.1007/s12011-021-02867-z. DOI: https://doi.org/10.1007/s12011-021-02867-z
Maksimchuk, P.O., Hubenko, K.O., Grygorova, G.V., Klochkov, V.K., Sorokin, A.V., Yefmova, S.L. (2021). Impact of EU3+ ions on pro-oxidant activity of Revo4:Eu3+ Nanocrystals. The Journal of Physical Chemistry C, 125(2), 1564-1569. DOI:10.1021/acs.jpcc.0c10028. DOI: https://doi.org/10.1021/acs.jpcc.0c10028
Xi, W., Tang H., Liu, Y.Y., Liu, C.Y., Gao, Y., Cao, A., Liu, Y., Chen, Z., Wang, H. (2019). Cytotoxicity of vanadium oxide nanoparticles and titanium dioxide-coated vanadium oxide nanoparticles to human lung cells. Journal of Applied Toxicology, 40 (5), 567-577. DOI:10.1002/jat.3926. DOI: https://doi.org/10.1002/jat.3926
Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., Li, P. (2020). Reactive oxygen species-related nanoparticle toxicity in the biomedical feld. Nanoscale Res Lett, 15 (1), 115. DOI:10.1186/ s11671-020-03344-7. DOI: https://doi.org/10.1186/s11671-020-03344-7
Wang, D., Zhao, L., Ma, H., Zhang, H., Guo, L.-H. (2017). Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: the role of superoxide radicals. Environ. Sci. Technol., 51, 10137-10145. DOI: https://doi.org/10.1021/acs.est.7b00473
Applerot, G., Lellouche, J., Lipovsky, A., Nitzan, Y., Lubart, R., Gedanken, A., Banin, E. (2012). Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small, 8, 3326-3337. DOI: https://doi.org/10.1002/smll.201200772
Edetsberger, M., Gaubitzer, E., Valic, E., Waigmann, E., Köhler, G. (2005). ‘Detection of nanometer-sized particles in living cells using modern fuorescence fuctuation methods. Biochem. Biophys. Res. Commun., 332 (1), 109-116. doi:10.1016/j.bbrc.2005.04.100 DOI: https://doi.org/10.1016/j.bbrc.2005.04.100
Nikitchenko, Y.V., Klochkov, V.K., Kavok, N.S., Averchenko, K.A., Karpenko, N.A., Nikitchenko, I.V., Yefmova, S.L., Bozhkov, A.I. (2021). Anti-aging efects of antioxidant rare-earth orthovanadate nanoparticles in wistar rats. Biol. Trace Elem. Res. DOI:10.1007/ s12011-020-02531-y.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Medical and Clinical Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.