EFFECT OF GADOLINIUM ORTHOVANADATE NANOPARTICLES WITH EUROPIUM GDVO4:EU3+ WITH AND WITHOUT PREVIOUS UV IRRADIATION ON THE GENERATION OF REACTIVE OXYGEN SPECIES IN RAT LEUKOCYTES

Authors

  • Т. О. Briukhanova KHARKIV NATIONAL MEDICAL UNIVERSITY
  • О. А. Nakonechna KHARKIV NATIONAL MEDICAL UNIVERSITY
  • Т. V. Horbach KHARKIV NATIONAL MEDICAL UNIVERSITY
  • S. L. Yefimova KHARKIV NATIONAL MEDICAL UNIVERSITY
  • S. О. Stetsenko KHARKIV NATIONAL MEDICAL UNIVERSITY

DOI:

https://doi.org/10.11603/mcch.2410-681X.2023.i3.14107

Keywords:

gadolinium orthovanadate, nanoparticles, oncology, reactive oxygen species, flow cytometry

Abstract

Introduction. Considering the significant rate of oncopathologies spreading, search and research of methods for increasing the effectiveness and safety profile of anticancer therapy is relevant. One of the promising radiosensitizers are nanoparticles, including gadolinium orthovanadate with europium. However, data on their cytotoxicity are quite limited, which determines the feasibility of their further study.

The aim of the study – to evaluate the generation of reactive oxygen species (ROS) in rats peripheral blood leukocytes under the influence of GdVO4:Eu3+ nanoparticles (oral administration).

Research methods. The WAG rats were used in our study, which were divided into 3 groups that received drinking water (group 1); aqueous solution of GdVO4:Eu3+ at a dose of 50 μg/kg of body weight without UV irradiation (group 2) and with previous UV irradiation (group 3) for 14 days intragastrically. In the suspension of leukocytes, the generation of ROS was determined using the fluorescent probe 2,7-dichlorodihydrofluorescein diacetate on a flow cytometer. The obtained results were processed statistically.

Results and Discussion. The results indicate uneven generation of ROS in leukocytes: a significant intensification of ROS production was observed in group 2, compared to the control. Previous UV irradiation of GdVO4:Eu3+ nanoparticles led to a decrease in the fluorescence index (indication of ROS generation) (group 3), compared to the other two groups. It is obvious that the determining factor is not only the UV irradiation of nanoparticles, but also the duration and method of administration of the nanoparticles themselves.

Conclusions. The results of our research indicate that GdYVO4:Eu3+ nanoparticles administered orally in rats at a dose of 50 μg/kg of body weight without previous UV irradiation are able to reliably increase the generation of ROS in leukocytes, while the use of nanoparticles with a similar dose with previous UV irradiation, on the contrary, is accompanied by a decrease in ROS production, even compared to the control.

References

Wild, C.P. (2019) ‘The global cancer burden: Necessity is the mother of prevention’, Nature Reviews Can­cer, 19 (3), 123-124. DOI:10.1038/s41568-019-0110-3. DOI: https://doi.org/10.1038/s41568-019-0110-3

Chen, H.H.W., Kuo, M.T. (2017) Improving radio­therapy in cancer treatment: Promises and challenges, Oncotarget, 8 (37), 62742-62758. doi:10.18632/oncotarget.18409. DOI: https://doi.org/10.18632/oncotarget.18409

Garibaldi, C., Jereczek-Fossa, B.A., Marvaso, G., Dicuonzo, S., Rojas, D.P., Cattani, F., Starzyńska, A., Ciardo, D., Surgo, A., Leonardi, M.C., Ricotti, R. (2017). Recent advances in Radiation oncology. Ecancer medical science, 11. doi:10.3332/ecancer.2017.785. DOI: https://doi.org/10.3332/ecancer.2017.785

Gargioni, E., Schulz, F., Raabe, A., Burdak-Rothkamm, S., Rieckmann, T., Rothkamm, K. (2016). Targeted nanoparticles for tumour radiotherapy enhancement the long dawn of a golden era? Annals of Trans­lational Medicine, 4(24), 523-523. DOI:10.21037/atm.2016.12.46. DOI: https://doi.org/10.21037/atm.2016.12.46

Retif, P., Pinel, S., Toussaint, M., Frochot, C., Chouikrat, R., Bastogne, T., Barberi-Heyob, M. (2015). Nanoparticles for radiation therapy enhancement: The key parameters. Theranostics, 5 (9), 1030-1044. DOI:10.7150/thno.11642. DOI: https://doi.org/10.7150/thno.11642

Kwatra, D., Venugopal, A., Anant, S. (2013). Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Trans. Cancer Res., 2 (4), 330-342. doi:10.21037/1550

Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., Wu, S., Deng, Y., Zhang, J., & Shao, A (2020). Nanoparticle-based drug delivery in cancer therapy and its role in o­vercoming drug resistance. Frontiers in Molecular Biosciences, 7. DOI:10.3389/fmolb.2020.00193. DOI: https://doi.org/10.3389/fmolb.2020.00193

Mishra, K., Singh, A., Pandey, A., Mishra, K.P. (2014). Reactive oxygen species as mediator of tumor radiosensitivity. Journal of Cancer Research and Therapeutics, 10 (4), 811. DOI:10.4103/0973-1482. 146073. DOI: https://doi.org/10.4103/0973-1482.146073

Verry, C., Sancey, L., Dufort, S., Le Duc G., Mendoza, C., Lux, F., Grand, S., Arnaud, J., Quesada, J.L., Villa, J., Tillement, O., Balosso, J. (2019). Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: Nano-Rad, a phase I study protocol. BMJ Open, 9 (2). DOI:10.1136/bmjopen-2018-023591. DOI: https://doi.org/10.1136/bmjopen-2018-023591

Zhulikova, M.V. Myroshnychenko, M.S., Nako­nechna, O.A., Zhulikov, O.O., Pustova, N.O., Bibichen­ko, V.O., Lytvynenko, O.Yu., Kucheriavchenko, M.O. (2023). Reactive oxygen species generation by blood leucocytes of rats with polycystic ovary syndrome under the conditions of intermittent cold exposure. Wiadomości Lekarskie, 76 (7), 1670-1676. DOI:10.36740/wlek202307123. DOI: https://doi.org/10.36740/WLek202307123

Sancey, L., Lux, F., Kotb, S., Roux, S., Dufort, S., Bianchi, A., Crémillieux, Y., et al. (2014). The use of the­ranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. The British Journal of Radiology, 87(1041), 20140134. DOI:10.1259/bjr.20140134. DOI: https://doi.org/10.1259/bjr.20140134

Yefimova, S.L. Maksimchuk, P.O., Hubenko, K.O., Omielaieva, V.V., Kavok, N.S., Klochkov, V.K., Malyu­kin, Y.V., Semynozhenko, V.P. (2020). Light-triggered redox activity of gdyvo4:eu3+ nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 242, 118741. DOI:10.1016/j.saa.2020.118741. DOI: https://doi.org/10.1016/j.saa.2020.118741

Maksimchuk, P.O., Yefmova, S.L., Hubenko, K.O., Omielaieva, V.V., Kavok, N.S., Klochkov, V.K., Sorokin, O.V., Malyukin, Y.V. (2020). Dark reactive oxygen species generation in Revo4:Eu3+ (re = gd, y) nanoparticles in aqueous solutions. The Journal of Physical Chemistry C, 124 (6), 3843-3850. DOI:10.1021/acs.jpcc.9b10143. DOI: https://doi.org/10.1021/acs.jpcc.9b10143

Babenko, O., Vasylyeva, I., Nakonechna, O., Popova, L., Voitenko, S., Pustova, N. (2022). The viability of leukocytes and reactive oxygen species generation by them in rats with chronic colitis. Wiad Lek., 75 (9 pt 2). 2270-2274. DOI: https://doi.org/10.36740/WLek202209216

Onishchenko, A., Myasoedov, V., Yefimova, S., Nakonechna, O., Prokopyuk, V., Butov, D. et al. (2021). UV light-activated gdyvo4:eu3+ nanoparticles induce reactive oxygen species generation in leukocytes without affecting erythrocytes in vitro. Biological Trace Element Research, 200 (6), 2777-2792. DOI:10.1007/s12011-021-02867-z. DOI: https://doi.org/10.1007/s12011-021-02867-z

Maksimchuk, P.O., Hubenko, K.O., Grygoro­va, G.V., Klochkov, V.K., Sorokin, A.V., Yefmova, S.L. (2021). Impact of EU3+ ions on pro-oxidant activity of Revo4:Eu3+ Nanocrystals. The Journal of Physical Chemistry C, 125(2), 1564-1569. DOI:10.1021/acs.jpcc.0c10028. DOI: https://doi.org/10.1021/acs.jpcc.0c10028

Xi, W., Tang H., Liu, Y.Y., Liu, C.Y., Gao, Y., Cao, A., Liu, Y., Chen, Z., Wang, H. (2019). Cytotoxicity of vanadium oxide nanoparticles and titanium dioxide-coated vanadium oxide nanoparticles to human lung cells. Journal of Applied Toxicology, 40 (5), 567-577. DOI:10.1002/jat.3926. DOI: https://doi.org/10.1002/jat.3926

Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., Li, P. (2020). Reactive oxygen species-related nanoparticle toxicity in the biomedical feld. Nanoscale Res Lett, 15 (1), 115. DOI:10.1186/ s11671-020-03344-7. DOI: https://doi.org/10.1186/s11671-020-03344-7

Wang, D., Zhao, L., Ma, H., Zhang, H., Guo, L.-H. (2017). Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: the role of superoxide radicals. Environ. Sci. Technol., 51, 10137-10145. DOI: https://doi.org/10.1021/acs.est.7b00473

Applerot, G., Lellouche, J., Lipovsky, A., Nitzan, Y., Lubart, R., Gedanken, A., Banin, E. (2012). Understanding the antibacterial mechanism of CuO nano­particles: revealing the route of induced oxidative stress. Small, 8, 3326-3337. DOI: https://doi.org/10.1002/smll.201200772

Edetsberger, M., Gaubitzer, E., Valic, E., Waigmann, E., Köhler, G. (2005). ‘Detection of nanometer-sized particles in living cells using modern fuorescence fuctuation methods. Biochem. Biophys. Res. Commun., 332 (1), 109-116. doi:10.1016/j.bbrc.2005.04.100 DOI: https://doi.org/10.1016/j.bbrc.2005.04.100

Nikitchenko, Y.V., Klochkov, V.K., Kavok, N.S., Averchenko, K.A., Karpenko, N.A., Nikitchenko, I.V., Yefmova, S.L., Bozhkov, A.I. (2021). Anti-aging efects of antioxidant rare-earth orthovanadate nanoparticles in wistar rats. Biol. Trace Elem. Res. DOI:10.1007/ s12011-020-02531-y.

Published

2023-10-27

How to Cite

Briukhanova Т. О., Nakonechna О. А., Horbach Т. V., Yefimova, S. L., & Stetsenko S. О. (2023). EFFECT OF GADOLINIUM ORTHOVANADATE NANOPARTICLES WITH EUROPIUM GDVO4:EU3+ WITH AND WITHOUT PREVIOUS UV IRRADIATION ON THE GENERATION OF REACTIVE OXYGEN SPECIES IN RAT LEUKOCYTES. Medical and Clinical Chemistry, (3), 55–60. https://doi.org/10.11603/mcch.2410-681X.2023.i3.14107

Issue

Section

ORIGINAL INVESTIGATIONS