THE INFLUENCE OF CALCITRIOL ON THE PRODUCTION OF HYDROGEN SULFIDE IN THE CARDIOVASCULAR SYSTEM OF RATS

Authors

  • R. S. Ostrenyuk M. PYROHOV VINNYTSIA NATIONAL MEDICAL UNIVERSITY
  • N. V. Zaichko M. PYROHOV VINNYTSIA NATIONAL MEDICAL UNIVERSITY

DOI:

https://doi.org/10.11603/mcch.2410-681X.2023.i3.14002

Keywords:

hydrogen sulfide, metabolism, vitamin D, calcitriol, aorta, myocardium, rats

Abstract

Introduction. Vitamin D status disturbances are independent factor of high cardiovascular risk, arterial hypertension, coronary sclerosis, myocardial infarction. The active form of vitamin D (calcitriol) has been shown to be directly involved in the regulation of proliferation, cell adhesion, and membrane transport in the cardiovascular system. Some studies have demonstrated the booster effect of vitamin D on the level of the multifunctional gas mediator hydrogen sulfide (H2S) in tissues. However, the involvement of calcitriol in the regulation of various H2S metabolism pathways in the heart and blood vessels has not been definitively clarified and requires further investigation.

The aim of study – to determine the effect of calcitriol on different H2S metabolism pathways in the myocardium and aorta of rats.

Research Methods. The experiments were performed on 105 white male laboratory rats in accordance with the principles of bioethics. Calcitriol (1.25 (OH)2D3) was administered intragastrically in doses of 0.1 μg/kg and
1.0 μg/kg of rat body weight for 4 weeks. Control rats received equivolume amounts of the solvent. In the aorta and myocardium homogenates were determined H2S level and the activity of H2S metabolism enzymes. The expression of the cystathionine-γ-lyase (CSE) gene was determined using the method of quantitative real-time PCR (qRT-PCR). Statistical analysis of the results was performed using MS Excel and IBM Statistics SPSS 26 for Windows. The significance of the differences was assessed by the Mann-Whitney U test at a significance level of p<0.05.

Results and Discussion. Calcitriol induced multi-vector changes in H2S metabolism in the cardiovascular system depending on the dose and duration of use. 1.25 (OH)2D3 in a dose of 0.1μg/kg caused an increase in the level of H2S in the aorta and myocardium of rats and elevated the activity of enzymes of synthesis and utilization of H2S during the 4 weeks of the experiment. 1,25 (OH)2D3 at a dose of 1 μg/kg caused an increase in the level of H2S in the aorta and myocardium during the first 14 days, but subsequently had a depressing effect on the enzymes of H2S metabolism and caused a decrease in the level of H2S in rat myocardium and aorta. 1,25 (OH)2D3 had an effect on CSE gene expression in the aorta and myocardium of rats with a stimulating effect at a dose of 0.1 μg/kg and an inhibitory effect at a dose of 1 μg/kg.

Conclusions. Calcitriol acts as a regulator of different H2S metabolism pathways in the cardiovascular system of rats: in high doses, 1,25 (OH)2D3 significantly inhibits the activity of H2S-synthesizing enzymes and enzymes of H2S utilization in the aorta and myocardium, while at physiological concentrations, it stimulates H2S production. The phenomenon of influence of 1.25 (OH)2D3 on the H2S system is important for determining the strategy of preventing cardiovascular diseases according to varying vitamin D3 status.

References

Latic, N., & Erben, R.G. (2020). Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure. Int. J. Mol. Sci., 21 (18), 6483. DOI: 10.3390/ijms21186483. DOI: https://doi.org/10.3390/ijms21186483

Acharya, P., Tarun, D., Ranka, S., Sethi, P., Oni, O.A., Safarova, M.S. … & Barua, R.S. (2021) The effects of vitamin D supplementation and 25-hydroxyvitamin D levels on the risk of myocardial infarction and mortality. Journal of the Endocrine Society, 5 (10), bvab124, https://doi.org/10.1210/jendso/bvab124 DOI: https://doi.org/10.1210/jendso/bvab124

Chen, S., Glenn, D.J., Ni, W., Grigsby, C.L., Olsen, K., Nishimoto, M., … & Gardner, D.G. (2008) Expression of the vitamin D receptor is increased in the hypertrophic heart. Hypertension, 52, 1106-1112. DOI: 10.1161/HYPERTENSIONAHA.108.119602. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.108.119602

Li, Y.C., Kong, J., Wei, M., Chen, Z.F., Liu, S.Q., & Cao, L.P. (2002) 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Investig., 110, 229-238. DOI: 10.1172/JCI0215219. DOI: https://doi.org/10.1172/JCI0215219

Andrukhova, O., Slavic, S., Zeitz, U., Riesen, S.C., Heppelmann, M.S., Ambrisko, T.D. … & Erben, R.G. (2014) Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol. Endocrinol., 28, 53-64. DOI: 10.1210/me.2013-1252. DOI: https://doi.org/10.1210/me.2013-1252

Lv, B., Chen, S., Tang, C., Jin, H., Du, J., & Huang, Y. (2021) Hydrogen sulfide and vascular regu­lation – An update. J. Adv. Res., 27, 85-97. DOI: 10.1016/j.jare.2020.05.007. DOI: https://doi.org/10.1016/j.jare.2020.05.007

Kolluru, G.K., Shackelford, R.E., Shen, X., Paari, D. & Kevil, C.G. (2023) Sulfide regulation of cardiovascular function in health and disease. Nat. Rev. Cardiol., 20, 109-125. https://doi.org/10.1038/s41569-022-00741-6 DOI: https://doi.org/10.1038/s41569-022-00741-6

Libiad, M., Motl, N., Akey, D. L., Sakamoto, N., Fearon, E. R., Smith, J. L., & Banerjee, R. (2018). Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin. J. Biol. Chem., 293 (8), 2675-2686. https://doi.org/10.1074/jbc.RA117.000826 DOI: https://doi.org/10.1074/jbc.RA117.000826

Wiliński, B., Wiliński, J., Somogyi, E., Piotrowska, J., & Opoka, W. (2012). Vitamin D3 (cholecalciferol) boosts hydrogen sulfide tissue concentrations in heart and other mouse organs. Folia Biol. (Krakow), 60 (3-4), 243-247. DOI: 10.3409/fb60_3-4.243-247. DOI: https://doi.org/10.3409/fb60_3-4.243-247

Manna, P., & Jain, S.K. (2012). Vitamin D up-regulates glucose transporter 4 (GLUT4) translocation and glucose utilization mediated by cystathionine-γ-lyase (CSE) activation and H2S formation in 3T3L1 adipocytes. J. Biol. Chem., 287 (50), 42324-42332. DOI: 10.1074/jbc.M112.407833. DOI: https://doi.org/10.1074/jbc.M112.407833

Yin Y., Yu Z., Xia M., Luo X., Lu X., & Ling W. (2012) Vitamin D attenuates high fat diet-induced hepatic steatosis in rats by modulating lipid metabolism. Eur. J. Clin. Invest., 42 (11), 1189-1196. DOI: 10.1111/j.1365- 2362.2012.02706.x. DOI: https://doi.org/10.1111/j.1365-2362.2012.02706.x

Blazhchenko, V.V., & Zaichko, N.V. (2022). The effect of zinc sulfate, sodium thiosulfate, lipoic acid, and taurine on hydrogen sulfide metabolism in kidneys of rats with diet-induced obesity. Medical and Clinical Chemistry, 24 (1), 46–52. https://doi.org/10.11603/mcch.2410-681X.2022.i1.13036 [in Ukrainian] DOI: https://doi.org/10.29254/2077-4214-2022-2-1-164-114-125

Huang, P., Shen, Z., Yu, W., Huang, Y., Tang, C., Du, J., & Jin, H. (2017) Hydrogen sulfide inhibits high-salt diet-induced myocardial oxidative stress and myocardial hypertrophy in Dahl rats. Frontiers in Pharmacology, 8, 128. https://doi.org/10.3389/fphar.2017.00128$ DOI: https://doi.org/10.3389/fphar.2017.00128

Zhang, H., Zhuang, X.D., Meng, F.H., Chen, L., Dong, X.B., Liu, G.H., … & Yang, C.T. (2016) Calcitriol prevents peripheral RSC96 Schwann neural cells from high glucose & methylglyoxal-induced injury through restoration of CBS/H2S expression. Neurochem Int., 92, 49-57. DOI: 10.1016/j.neuint.2015.12.005 DOI: https://doi.org/10.1016/j.neuint.2015.12.005

Hafez, A.A., Samiei, S., Salimi, A., Jamali, Z., Khezri, S., & Sheikhghaderi H. (2021) Calcitriol attenuates the cytotoxicity induced by aluminium phosphide via inhibiting mitochondrial dysfunction and oxidative stress in rat isolated cardiomyocytes. Pestic Biochem Physiol., 176, 104883. DOI: 10.1016/j.pestbp.2021.104883. DOI: https://doi.org/10.1016/j.pestbp.2021.104883

Mikami, Y., Shibuya, N., Ogasawara, Y., & Kimura, H. (2013) Hydrogen sulfide is produced by cystathionine γ-lyase at the steady-state low intracellular Ca(2+) concentrations. Biochem. Biophys. Res. Com­mun., 431, 131-135. DOI: 10.1016/j.bbrc.2013.01.010. DOI: https://doi.org/10.1016/j.bbrc.2013.01.010

Santos-Martínez, N., Díaz, L., Ortiz-Ortega, V.M., Ordaz-Rosado, D., Prado-Garcia, H., Avila, E., … & García-Becerra, R. (2021) Calcitriol induces estrogen receptor α expression through direct transcriptional regulation and epigenetic modifications in estrogen receptor-negative breast cancer cells. Am. J. Cancer Res., 11 (12), 5951-5964.

Leucker, T.M., Nomura, Y., Kim, J.H., Bhatta, A., Wang, V., Wecker, A., … & Pandey, D. (2017) Cystathionine γ-lyase protects vascular endothelium: a role for inhibition of histone deacetylase 6. Am. J. Physiol. Heart Circ. Physiol., 312(4), 711-720. DOI: 10.1152/ajpheart. 00724.2016. DOI: https://doi.org/10.1152/ajpheart.00724.2016

Mikami, Y., Shibuya, N., Kimura, Y., Nagahara, N., Yamada, M., & Kimura, H. (2011) Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J. Biol. Chem., 286 (45), 39379-39386. DOI: 10.1074/jbc.M111.298208. DOI: https://doi.org/10.1074/jbc.M111.298208

Hamilton, J.P., Potter, J.J., Koganti, L., Meltzer, S.J., & Mezey, E. (2014) Effects of vitamin D3 stimulation of thioredoxin-interacting protein in hepa­tocellular carcinoma. Hepatol Res., 44 (13),1357-1366. DOI: 10.1111/hepr.12302. DOI: https://doi.org/10.1111/hepr.12302

Kim, Y., Kim, Y.-S., Kim, M., Kim, J.-M., Lee, H.-H., & Kim, T.-H. (2019) Thioredoxin-interacting protein (TXNIP) mediates thioredoxin-dependent antioxidant me­chanism in endometrial cancer cells treated with 1α,25-dihydroxyvitamin D3. Anticancer Research., 39 (9) 4795-4803. DOI: 10.21873/anticanres.13664 DOI: https://doi.org/10.21873/anticanres.13664

Schütze, N., Fritsche, J., Ebert-Dümig, R., Schneider, D., Köhrle, J., Andreesen, R., … & Jakob, F. (1999) The selenoprotein thioredoxin reductase is expressed in peripheral blood monocytes and THP1 human myeloid leukemia cells--regulation by 1,25-dihydroxyvitamin D3 and selenite. Biofactors., 10 (4), 329-338. DOI: 10.1002/biof.5520100403. DOI: https://doi.org/10.1002/biof.5520100403

Published

2023-10-27

How to Cite

Ostrenyuk, R. S., & Zaichko, N. V. (2023). THE INFLUENCE OF CALCITRIOL ON THE PRODUCTION OF HYDROGEN SULFIDE IN THE CARDIOVASCULAR SYSTEM OF RATS. Medical and Clinical Chemistry, (3), 5–12. https://doi.org/10.11603/mcch.2410-681X.2023.i3.14002

Issue

Section

ORIGINAL INVESTIGATIONS