THE EFFECT OF ZINC SULFATE, SODIUM THIOSULFATE, LIPOIC ACID, AND TAURINE ON HYDROGEN SULFIDE METABOLISM IN KIDNEYS OF RATS WITH DIET-INDUCED OBESITY
DOI:
https://doi.org/10.11603/mcch.2410-681X.2022.i1.13036Keywords:
hydrogen sulfide, metabolism, obesity, chronic kidney disease, high-calorie high-fat diet, ratsAbstract
Introduction. The problem of prevention and correction of nephropathy in obesity is becoming increasingly important. The kidneys synthesize a multifunctional regulator of hydrogen sulfide (H2S), the metabolism of which in obesity can accelerate the formation of chronic kidney disease. The search for metabolic correctors that could normalize H2S metabolism in the kidneys in obesity and would not show a lipogenic effect remains relevant. This effect can be seen in cofactors and co-substrates of thiosulfate-dependent H2S metabolism.
The aim of the study – to establish the effect of zinc sulfate, sodium thiosulfate, lipoic acid, and taurine on hydrogen sulfide metabolism in kidneys of rats with diet-induced obesity (DIO).
Research Methods. Experiments were performed on 60 white laboratory male rats in accordance with the principles of bioethics (Strasbourg, 1986; Kyiv, 2001). DIO was induced in 50 rats by dieting on a high-calorie high-fat diet (energy value 4.33 kcal/g) for 10 weeks. The control group (10 rats) received a standard diet (energy value 2.71 kcal/g). Correctors of H2S metabolism (zinc sulfate, sodium thiosulfate, lipoic acid, taurine) were administered during the last 2 weeks. The activity of the enzymes of H2S metabolism was determined in kidney homogenates. Statistical processing was performed in the package IBM Statistics SPSS 26, differences were assessed in the Kraskel – Wallis test at a significance level of p<0.05.
Results. The following H2S metabolism disorders in the kidneys were detected in DIO rats: decreased activity of PLP-dependent transsulfuration enzymes (cystathionine-γ-lyase, cystathionine-β-synthase, cysteine aminotransferase), decreased activity of thiosulfate-dependent pathways of H2S metabolism (thiosulfate (thiol) sulfurtransferase, thioredoxin reductase, sulfite oxidase) and low H2S level, which correlated with an increase in body mass index and index Lee. Zinc sulfate, lipoic acid, sodium thiosulfate and taurine increased the level of H2S and the activity of H2S-synthesizing enzymes of transsulfuration and thiosulfate-dependent pathways in the kidneys (1.4–1.5 times, p <0.01), without causing lipogenic effect in rats with DIO.
Conclusions. Zinc sulfate, lipoic acid, sodium thiosulfate effectively reduce H2S metabolism disorders in the kidneys which were induced by high-calorie high-fat diet and inhibit the development of obesity in rats.
References
Sharma, I., Liao, Y., Zheng, X., & Kanwar, Y.S. (2021). New pandemic: obesity and associated nephropathy. Frontiers in Medicine, 8, 673556. doi:10.3389/fmed.2021.673556
Yang, S., Cao, C., Deng, T., & Zhou, Z. (2020). Obesity-related glomerulopathy: a latent change in obesity requiring more attention. Kidney Blood Press Res., 45 (4), 510-522. DOI: 10.1159/000507784
Melnik A.V., Pentiuk, O.O. (2009). Activity of hydrogen sulfide production enzymes in kidneys of rats. Ukrainian Biochemical Journal, 81 (4), 12-23 [in Ukrainian].
Cao, X., & Bian, J.S. (2016). The role of hydrogen sulfide in renal system. Front. Pharmacol., 7, 385. DOI: 10.3389/fphar.2016.00385.
Libiad, M., Motl, N., Akey, D.L., Sakamoto, N., Fearon, E.R., Smith, J.L., & Banerjee, R. (2018). Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin. J. Biol. Chem., 293 (8), 2675-2686. DOI:10.1074/jbc.RA117.000826.
Ngowi, E.E., Sarfraz, M., Afzal, A., Khan, N.H., Khattak, S., Zhang, X. ... & Wu, D.D. (2020). Roles of hydrogen sulfide donors in common kidney diseases. Front. Pharmacol., 11, 564281. DOI:10.3389/fphar.2020.564281.
Yang, G., Ju, Y., Fu, M., Zhang, Y., Pei, Y., Racine, M., ... & Wu, L. (2018). Cystathionine gamma-lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1863 (2), 165-176. DOI: 10.1016/j.bbalip.2017.11.008.
Comas, F., Latorre, J., Ortega, F., Arnoriaga Rodríguez, M., Lluch, A., Sabater, M., … & Moreno-Navarrete, J.M. (2021). Morbidly obese subjects show increased serum sulfide in proportion to fat mass. Int. J. Obes. (Lond), 45 (2), 415-426. DOI: 10.1038/s41366-020-00696-z.
Halenova, T., Zlatskiy, I., Syroeshkin, A., Maximova, T., & Pleteneva, T. (2019). Deuterium-depleted water as adjuvant therapeutic agent for treatment of diet-induced obesity in rats. Molecules (Basel, Switzerland), 25 (1), 23. doi:10.3390/molecules25010023.
Novelli, E.L., Diniz, Y.S., Galhardi, C.M., Ebaid, G.M., Rodrigues, H.G., Mani, F., … & Novelli Filho, J.L. (2007). Anthropometrical parameters and markers of obesity in rats. Lab. Anim., 41 (1), 111-119. DOI: 10.1258/002367707779399518.
Wiliński, B., Wiliński, J., Somogyi, E., Piotrowska, J., & Góralska, M. (2011). Atorvastatin affects the tissue concentration of hydrogen sulfide in mouse kidneys and other organs. Pharmacol. Rep., 63 (1), 184-188. DOI: 10.1016/s1734-1140(11)70414-5.
Stipanuk, M.H., & Beck, P.W. (1982). Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem. J., 206 (2), 267-277. DOI:10.1042/bj2060267
Zaichko, N.V., Pentiuk, N.O., Melnik, A.V., & Shtatko, O.I. (2009). Formation of hydrogen sulfide in the organs of rats. Medical Chemistry, 11 (4), 7-13 [in Ukrainian].
Cohen, H.J., & Fridovich, I. (1971). Hepatic sulfite oxidase. Purification and properties. J. Biol. Chem., 246 (2), 359-366.
Jung, H.I., Lim, H.W., Kim, B.C., Park, E.H., & Lim, C.J. (2004). Differential thioredoxin reductase activity from human normal hepatic and hepatoma cell lines. Yonsei Med. J., 45 (2), 263-272. DOI: 10.3349/ymj.2004.45.2.263.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193 (1), 265-275.
Khorsandi, H., Nikpayam, O., Yousefi, R., Parandoosh, M., Hosseinzadeh, N., Saidpour, A., & Ghorbani, A. (2019). Zinc supplementation improves body weight management, inflammatory biomarkers and insulin resistance in individuals with obesity: a randomized, placebo-controlled, double-blind trial. Diabetology & Metabolic Syndrome, 11, 101. DOI: 10.1186/s13098-019-0497-8.
Rios-Lugo, M.J., Madrigal-Arellano, C., Gaytán-Hernández, D., Hernández-Mendoza, H., & Romero-Guzmán, E.T. (2020). Association of serum zinc levels in overweight and obesity. Biol. Trace Elem. Res., 198 (1), 51-57. DOI: 10.1007/s12011-020-02060-8.
Comas, F., & Moreno-Navarrete, J.M. (2021). The impact of H2S on obesity-associated metabolic disturbances. Antioxidants (Basel, Switzerland), 10 (5), 633. DOI: 10.3390/antiox10050633.
Mohan, D., Balasubramanian, E.D., Ravindran, S., & Kurian, G.A. (2017). Renal mitochondria can withstand hypoxic/ischemic injury secondary to renal failure in uremic rats pretreated with sodium thiosulfate. Indian J. Pharmacol., 49 (4), 317-321. DOI:10.4103/ijp.IJP_751_16.
Hsu, C.N., Hou, C.Y., Chang-Chien, G.P., Lin, S., Yang, H.W., & Tain, Y.L. (2022). Sodium thiosulfate improves hypertension in rats with adenine-induced chronic kidney disease. Antioxidants (Basel, Switzerland), 11 (1), 147. doi:10.3390/antiox11010147.
Larghero P., Venè, R., Minghelli, S., Travaini, G., Morini, M., Ferrari, N., … & Benelli, R. (2007). Biological assays and genomic analysis reveal lipoic acid modulation of endothelial cell behavior and gene expression. Carcinogenesis, 28(5), 1008-1020. DOI: 10.1093/carcin/bgl233.
Bilska-Wilkosz, A., Iciek, M., Kowalczyk-Pachel, D., Górny, M., Sokołowska-Jeżewicz, M., & Włodek, L. (2017). Lipoic acid as a possible pharmacological source of hydrogen sulfide/sulfane sulfur. Molecules (Basel, Switzerland), 22 (3), 388. DOI:10.3390/molecules22030388
El Hajjaji, H., Dumoulin, M., Matagne, A., Colau, D., Roos, G., Messens, J., Collet, J.F. (2009). The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2. J. Mol. Biol., 386 (1), 60-71. DOI:10.1016/j.jmb.2008.11.046.
Lee, S.R. (2018). Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid. Med. Cell. Longev., 2018, 9156285. doi:10.1155/2018/9156285.
Saad-Hussein, A., Ibrahim, K., Abdalla, M., El-Mezayen, H. & Osman, N. (2020). Effects of zinc supplementation on oxidant/antioxidant and lipids status of pesticides sprayers. J. Complement. Integr. Med., 17 (1), 20190001. doi:10.1515/jcim-2019-0001
DiNicolantonio, J.J., OKeefe, J.H., & McCarty, M.F. (2017). Boosting endogenous production of vasoprotective hydrogen sulfide via supplementation with taurine and N-acetylcysteine: a novel way to promote cardiovascular health. Open Heart, 4 (1), e000600. DOI: 10.1136/openhrt-2017-000600.
Kim, K.S., Jang, M.J., Fang, S., Yoon, S.G., Kim, I.Y., Seong, J.K., … & Hahm, D.H. (2019). Anti-obesity effect of taurine through inhibition of adipogenesis in white fat tissue but not in brown fat tissue in a high-fat diet-induced obese mouse model. Amino Acids, 51 (2), 245-254. DOI: 10.1007/s00726-018-2659-7.
Namazi, N., Larijani, B., & Azadbakht, L. (2018). Alpha-lipoic acid supplement in obesity treatment: A systematic review and meta-analysis of clinical trials. Clin. Nutr, 37 (2), 419-428. DOI: 10.1016/j.clnu.2017.06.002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Medical and Clinical Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.