GENETICS OF TYPE 2 DIABETES MELLITUS AND ITS COMORBIDITY WITH OBESITY AND CHRONIC PANCREATITIS
DOI:
https://doi.org/10.11603/mcch.2410-681X.2020.i4.11748Keywords:
гени, ожиріння, хронічний панкреатит, коморбідністьAbstract
Introduction. Genes play an important role in the development of type 2 diabetes (T2DM). Researchers have proposed interactions between many genetic and environmental factors that contribute to development. Advances in genotyping and genetic information technology have facilitated the use of genome-related association research to identify T2DM susceptibility genes. Over the past decade, genome wide association studies (GWAS) using size selection have identified 144 genetic variants at 129 T2DM-associated loci.
When searching the literature on the common genetic background of T2DM and chronic pancreatitis (CP), it was found that the combination of T2DM + CP may be due to genetic variants of T2DM. The researchers found that people with T2DM + CP were more likely to be overweight or obese and had a family history of diabetes than those with CP who did not have diabetes. T2DM + CP exacerbates beta-cell dysfunction due to chronic inflammation and pancreatic fibrosis, which is likely to contribute to beta-cell death and the inability to compensate for insulin resistance, which exacerbates diabetes and pancreatitis. The genetic comparison of T2DM + CP and T2DM by SNPs associated with T2DM according to GWAS does not reflect the general role of genetics that could be expected from a whole genome sequence and a comprehensive analysis of all known genetic variants associated with complex pathobiology of pancreatic diseases/or diabetes.
The aim of the study – to analyze current literary sources about genetic markers that are involved in the mechanisms of type 2 diabetes mellitus and its comorbidity with obesity and chronic pancreatitis.
Conclusions. A large number of studies give reason to hope that in the future the study of the genetics of diabetes mellitus in terms of its comorbid course will develop effective prophylactic and therapeutic treatments, but now it is necessary to investigate in detail the role of polymorphisms of different genes, especially those disease, in susceptibility to comorbid type 2 diabetes.
References
Junhui, Chen, Yuhuan, Meng, Jinghui, Zhou, Min, Zhuo, Fei, Ling, Yu, Zhang, Hongli, Du, Xiaoning, Wang. (2013). "Identifying candidate genes for type 2 diabetes mellitus and obesity through gene expression profiling in multiple tissues or cells". Journal of Diabetes Research, Article ID 970435, 9. Retrieved from: https://doi.org/10.1155/2013/970435.
Morris, A.P., Voight, B.F., & Teslovich, T.M. (2012). Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet., 44, 981-990.
Flannick, J., & Florez, J.C. (2016). Type 2 diabetes: genetic data sharing to advance complex disease research. Nat. Rev. Genet., 17, 535-549.
Voight, B.F., Scott, L.J., Steinthorsdottir, V., Morris, A.P., Dina, C., Welch, R.P., et al. (2010). Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet., 42 (7), 579-589.
Yamauchi, T., Hara, K., Maeda, S., Yasuda, K., Takahashi, A., Horikoshi, M., et al. (2010). A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet., 42 (10), 864-868.
Florez, J.C. (2008). Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia, 51, 1100-1110.
Dimas, A.S., Lagou, V., & Barker, A. (2014). Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes, 63, 2158-2171.
Plengvidhya, N., Chanprasert, C., & Chongjaroen, N., (2018). Impact of KCNQ1, CDKN2A/2B, CDKAL1, HHEX, MTNR1B, SLC30A8, TCF7L2, and UBE2E2 on risk of developing type 2 diabetes in Thai population. BMC Med. Genet ., 19, 93.
Unoki, H., Takahashi, A., Kawaguchi, T., Hara, K., Horikoshi, M., Andersen, G., et al. (2008). SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet., 40 (9), 1098-1102.
Yasuda, K., Miyake, K., Horikawa, Y., Hara, K., Osawa, H., Furuta, H., et al. (2008). Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet., 40 (9), 1092-1097.
Yousef, A.A., Behiry, E.G., Allah, W.M.A., Hussien, A.M., Abdelmoneam, A.A., Imam, M.H., & Hikal, D.M. (2018). IRS-1 genetic polymorphism (r.2963G>A) in type 2 diabetes mellitus patients associated with insulin resistance. Appl. Clin. Genet., 28 (11), 99-106. DOI: 10.2147/TACG.S171096. PMID: 30319284; PMCID: PMC6167972.
Erica Oberg, N.D. (2018). Type 2 diabetes diet plan: List of foods to eat and avoid.
Ijaz, A., Babar, S., & Sarwar, S. (2019). The combined role of allelic variants of IRS-1 and IRS-2genes in susceptibility to type2 diabetes in the Punjabi Pakistani subjects. Diabetol. Metab. Syndr., 11, 64. Retrieved from: https://doi.org/10.1186/s13098-019-0459-1
Mahmutovic, L., Bego, T., & Sterner, M., (2019). Association of IRS1 genetic variants with glucose control and insulin resistance in type 2 diabetic patients from Bosnia and Herzegovina. Drug Metab Personal Ther.
El, Mkadem, S.A., Lautier, C., & Macari, F., (2001). Role of allelic variants Gly972Arg of IRS-1 and Gly1057Asp of IRS-2 in moderate-to-severe insulin resistance of women with polycystic ovary syndrome. Diabetes, 50 (9), 2164-2168.
Villuendas, G., Botella-Carretero, J.I., Roldán, B., Sancho, J., Escobar-Morreale, H.F., & San Millán, J.L. (2005). Polymorphisms in the insulin receptor substrate-1 (IRS-1) gene and the insulin receptor substrate-2 (IRS-2) gene influence glucose homeostasis and body mass index in women with polycystic ovary syndrome and non-hyperandrogenic controls. Hum. Reprod., 20 (11), 3184-3191.
Rung, J., Cauchi, S., & Albrechtsen., A. (2009). Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet., 41 (10), 1110-1115.
Shu, X.O., Long, J., & Cai, Q. (2010). Identification of new genetic risk variants for type 2 diabetes. PLoS Genet., 6 (9), 1001127.
Hilal, Arikoglu, Melda, Aksoy Hepdogru, Dudu, Erkoc Kaya, Aycan, Asik, Suleyman, Hilmi Ipekci, Funda. (2014). Iscioglu IRS1 gene polymorphisms Gly972Arg and Ala513Pro are not associated with insulin resistance and type 2 diabetes risk in non-obese Turkish population. Meta Gene., 2, 579-585.
Besse-Patin, A., Jeromson, S., Levesque-Damphousse, P., Secco, B., Laplante, M., Estall, JL. (2019). PGC1A regulates the IRS1: IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proc. Natl. Acad. Sci.,116 (10), 4285-4290.
Vana, DR., Adapa, D., Prasad, V., Choudhury, A., & Ahuja, G. (2019). Diabetes mellitus types: key genetic determinants and risk assessment. Genet. Mol. Res.
Sliwinska, A., Kasznicki, J., & Kosmalski, M. (2017). Tumour protein 53 is linked with type 2 diabetes mellitus. Indian J. Med. Res., 146 (2), 237-243. DOI:10.4103/ijmr.IJMR_1401_15.
Fiorentino, T.V., Prioletta, A., Zuo, P., & Folli, F. (2013). Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Current Pharmaceutical Design,19 (32), 5695-5703.
Vousden, K.H., & Prives, C. (2009). Blinded by the light: The growing complexity of p53. Cell, 137 (3), 413-431.
Jones, R.G., & Thompson, C.B. (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev., 23 (5), 537-548.
Kung, C.P., & Murphy, M.E. (2016). The role of the p53 tumor suppressor in metabolism and diabetes. J. Endocrinol., 231 (2), 61-75. DOI:10.1530/JOE-16-0324.
Kathryna Fontana, Rodrigues, Nathalia Teixeira, Pietrani1, Adriana Aparecida, Bosco, Fernanda Magalhães, Freire Campos, Valéria Cristina, Sandrim, Karina Braga, Gomes (2017). IL-6, TNF-α, and IL-10 levels/ polymorphisms and their association with type 2 diabetes mellitus and obesity in Brazilian individuals. Arch. Endocrinol. Metab., 61 (5), 438-446.
Boraska, V.І., Rayner, N.W., Groves, C.J., Frayling, T.M., Diakite, M., & Rockett, K.A. (2010). Large-scale association analysis of TNF/LTA gene region polymorphisms in type 2 diabetes. BMC Med Genet., 11, 69.
Saxena, M., Srivastava, N., & Banerjee, M. (2013). Association of IL-6, TNF-α and IL-10 gene polymorphisms with type 2 diabetes mellitus. Mol. Biol. Rep., 40 (11), 6271-6279.
Erdogan, M., Cetinkalp, S., Ozgen, AG., Saygili, F., Berdeli, A, Yilmaz C. Interleukin-10 (-1082G/A) gene polymorphism in patients with type 2 diabetes with and without nephropathy. Genet. Test Mol. Biomarkers, 16 (2), 91-94.
Zhao, Y., Li, Z., Zhang, L., Zhang, Y., Yang, Y., Tang, Y., et al. (2014). The TNF-alpha -308G/A polymorphism is associated with type 2 diabetes mellitus: an updated meta-analysis. Mol. Biol. Rep.,41 (1), 73-83.
Golshani, H., Haghani, K., Dousti, M., Bakhtiyaru, S. (2015). Association of TNF-α 308 G/A polymorphism with type 2 diabetes: a case-control study in the Iranian Kurdish Ethnic Group. Osong Public Health Res. Perspect, 6 (2), 94-99.
Yin, Y.W., Hu, A.M., Sun, Q.Q., Zhang, B.B., Liu, H.L., Wang, Q., et al. (2012). Association between interleukin 10 gene -1082 A/G polymorphism and the risk of type 2 diabetes mellitus: a meta-analysis of 4250 subjects. Cytokine, 62 (2), 226-231.
Yin, Y.W., Sun, Q.Q., Zhang, B.B., Hu, A.M., Liu, H.L., Wang, Q., et al. (2012). Association between interleukin-10 gene -592 C/A polymorphism and the risk of type 2 diabetes mellitus: a meta-analysis of 5320 subjects. Hum. Immunol., 2012, 73 (9), 960-965.
Prisco, A.R., Hoffmann, B.R., & Kaczorowski, С.С. (2016), Tumor necrosis factor α regulates endothelial progenitor cell migration via CADM1 and NF-κB. Stem Cells, 34 (7), 1922-1933.
Vendrell, J., Fernandez-Real, J.M., & Gutierrez, C. (2003). A polymorphism in the promoter of the tumor necrosis factor-α gene (−308) is associated with coronary heart disease in type 2 diabetic patients, Atherosclerosis, 167 (2), 257-264.
Swaroop, J.J., Rajarajeswari, D., & Naidu, J. (2012). Association of TNF-α with insulin resistance in type 2 diabetes mellitus. The Indian Journal of Medical Research, 135 (1), 127.
Geisa, Izetti Luna, Izabel, Cristina, Rodrigues da Silva, Mauro, & Niskier Sanchez (2016). Association between -308G/A TNFA Polymorphism and Susceptibility to Type 2 Diabetes Mellitus: A Systematic Review", Journal of Diabetes Research, 6. 6. ID 6309484. Retrieved from: https://doi.org/10.1155/2016/6309484
Sefri, H., Benrahma, H., & Charoute, H. (2014). TNF A -308G>A polymorphism in Moroccan patients with type 2 diabetes mellitus: a case-control study and meta-analysis. Molecular Biology Reports, 41 (9), 5805-5811.
Feng, R.N., Zhao, C., Sun, C.H., & Li, Y. (2011). Meta-analysis of TNF 308 G/A polymorphism and type 2 diabetes mellitus. PLoS ONE, 6 (4), ID e18480.
Steinkasserer, A., Spurr, NK., Cox, S., Jeggo, P., & Sim, R.B. (1992). The human IL-1 receptor antagonist gene (IL1RN) maps to chromosome 2q14-q21, in the region of the IL-1 alpha and IL-1 beta loci. Genomics, 13, 654-657.
Banerjee, M., Saxena, M. (2012). Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin Chim Acta., 413, 1163-1170.
Hülsmeyer, M., Scheufler, C., & Dreyer, M.K. (2001). Structure of interleukin 4 mutant E9A suggests polar steering in receptor-complex formation. Acta Crystallogr. D. Biol. Crystallogr., 57, 1334-1336.
Dinarello CA. (1996). Biologic basis for interleukin-1 in disease. Blood, 87, 2095-2147.
Banerjee, M., & Saxena, M. (2014). Genetic polymorphisms of cytokine genes in type 2 diabetes mellitus. World Journal of Diabetes, 5 (4), 493-504. DOI: 10.4239/wjd.v5.i4.493.
Cardellini, M., Perego, L., D’Adamo, M., Marini, M.A., Procopio, C., Hribal, M.L., Andreozzi, F., Frontoni, S., Giacomelli, M., Paganelli, M., et al. (2005). C-174G polymorphism in the promoter of the interleukin-6 gene is associated with insulin resistance. Diabetes Care, 28, 2007-2012.
Eskdale, J., Kube, D., Tesch, H., & Gallagher, G. (1997). Mapping of the human IL10 gene and further characterization of the 5' flanking sequence. Immunogenetics, 46 (2), 120-128.
Chagas, B.S., Gurgel, A.P., da Cruz, H.L., Amaral, C.M., Cardoso, M.V., Silva, Neto, Jda, C., da Silva, L.A., de Albuquerque, E.M., Muniz, M.T., & de Freitas, A.C. (2013). An interleukin-10 gene polymorphism associated with the development of cervical lesions in women infected with Human Papillomavirus and using oral contraceptives. Infect. Genet. Evol., 19, 32-37.
Jin, L., Sturgis, E.M., Cao, X., Song, X., Salahuddin, T., Wei, Q., & Li, G. (2013). Interleukin-10 promoter variants predict HPV-positive tumors and survival of squamous cell carcinoma of the oropharynx. FASEB J., 27 (6), 2496-2503.
Scarpelli, D., Cardellini, M., Andreozzi, F., Laratta, E., Hribal, M.L., Marini, M.A., et al. (2006). Variants of the interleukin-10 promoter gene are associated with obesity and insulin resistance but not type 2 diabetes in caucasian italian subjects. Diabetes, 55 (5), 1529-1533.
Blüher, M., Fasshauer, M., Tönjes, A., Kratzsch, J., Schön, MR., & Paschke, R. (2005). Association of interleukin-6, C-reactive protein, interleukin-10 and adiponectin plasma concentrations with measures of obesity, insulin sensitivity and glucose metabolism. Exp. Clin. Endocrinol. Diabetes, 113 (9), 534-537.
Al-Shukaili, A., Al-Ghafri, S., Al-Marhoobi, S., Al-Abri, S., Al-Lawati, J., & Al-Maskari, M. (2013). Analysis of inflammatory mediators in type 2 diabetes patients. Int. J. Endocrinol., 2013, 976810.
Mohebbatikaljahi, H., Menevse, S., Yetkin, I., & Demirci, H. (2009). Study of interleukin-10 promoter region polymorphisms (-1082A/G, -819T/C and -592A/C) in type 1 diabetes mellitus in Turkish population. Demirci H. J. Genet., 88 (2), 245-248.
Mahmoud, A.A., Sheneef, A., Sayed, A.A., Ezat,M.A.W., & Sabet, E.A. (2016). Association of Interleukin-10 (-592A/C) gene polymorphism with its level in type 2 diabetes mellitus with and without nephropathy. J. Mol. Genet. Med., 10. 199 10.4172/1747-0862.1000199.
Kang, J., Liu, C.H., Lee, C.N., Li, H.Y., Yang, C.W., Huang, S.C., Lin, S.Y., & Jou, T.S. (2019). Novel interleukin-10 gene polymorphism is linked to gestational diabetes in Taiwanese population. Front. Genet., 10, 89.
Edwards-Smith, C.J., Jonsson, J.R., Purdie, D.M., Bansal, A., Shorthouse, C., & Powell, E.E. (1999). Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis C to interferon alfa. Hepatology, 30 (2), 526-530.
Helaly, M.A.H., Hatata, E.S.Z., Abu-Elmagd, M., Ibrahem, E.F., Alsaid, A., El-Aal, I.A.A., et al. (2013). Association of IL-10 and IL-6 gene polymorphisms with type 2 diabetes mellitus among Egyptian patients. Eur. J. General Med., 10 , 158-162. 10.29333/ejgm/82250 ;
Saxena, M., Srivastava, N., & Banerjee, M. (2013). Association of IL-6, TNF-α and IL-10 gene polymorphisms with type 2 diabetes mellitus. Mol. Biol. Rep., 40 (11), 6271-6279.
Bai, H., Jing, D., Guo, A., & Yin, S.( 2014 ). Association between interleukin 10 gene polymorphisms and risk of type 2 diabetes mellitus in a Chinese population. J. Int. Med. Res., 42 (3),702-710.
Zhang, F., Yang, Y., & Lei, H.A. (2013). Meta-analysis about the association between -1082G/A and -819C/T polymorphisms of IL-10 gene and risk of type 2 diabetes. Hum. Immunol., 74, 618-626.
Junhui, Chen, Yuhuan, Meng, Jinghui, Zhou, Min, Zhuo, Fei, Ling, Yu, Zhang, Hongli, Du, & Xiaoning, Wang. (2013). Identifying candidate genes for type 2 diabetes mellitus and obesity through gene expression profiling in multiple tissues or cells. Journal of Diabetes Research, ID 970435, 9 . https://doi.org/10.1155/2013/970435
Locke, A.E., Kahali, B., Berndt, S.I., Justice, A.E., Pers, T.H., Day, F.R., Powell, C., Vedantam, S., Buchkovich, M.L., Yang, J., Croteau-Chonka, DC., et al. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature, 518 (7538), 197-206.
Shungin, D., Winkler, T.W., Croteau-Chonka, D.C., Ferreira, T., Locke, A.E., Magi, R., Strawbridge, R.J., Pers, T.H., Fischer, K., Justice, A.E., Workalemahu, T., et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature, 518 (7538), 187-196.
Akiyama, M., Okada, Y., Kanai, M., Takahashi, A., Momozawa, Y., Ikeda, M., Iwata, N., Ikegawa, S., Hirata, M., Matsuda, K., Iwasaki, M., et al.(2017). Genome-wide association study identifies 112 new loci for body mass index in the japanese population. Nat Genet., 49 (10), 1458-1467.
Tung, Y.C., Yeo, G.S., O’Rahilly, S., Coll, A.P. (2014). Obesity and fto: Changing focus at a complex locus. Cell Metab., 20 (5), 710-718.
Claussnitzer, M., Dankel, S.N., Kim, K.H., Quon, G., Meuleman, W., Haugen, C., Glunk, V., Sousa, I.S., Beaudry, J.L., Puviindran, V., Abdennur, N.A., et al. (2015). Fto obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med., 373 (10), 895-907.
Stratigopoulos, G., Burnett, L.C., Rausch, R., Gill, R., Penn, D.B., Skowronski, A.A., LeDuc, C.A., Lanzano, A.J., Zhang, P., Storm, D.R., Egli, D., et al. (2016). Hypomorphism of fto and rpgrip1l causes obesity in mice. J. Clin. Invest., 126 (5), 1897-1910.
Larder, R., Sim, M.F.M., Gulati, P., Antrobus, R., Tung, Y.C.L., Rimmington, D., Ayuso, E., Polex-Wolf, J., Lam, B.Y.H., Dias, C., Logan, D.W., et al. (2017). Obesity-associated gene tmem18 has a role in the central control of appetite and body weight regulation. Proc. Natl. Acad. Sci. U S A, 114 (35), 9421-9426.
Wiemerslage, L., Gohel, P.A., Maestri, G., Hilmarsson, T.G., Mickael, M., Fredriksson, R., Williams, M.J., & Schioth, H.B.(2016). The drosophila ortholog of tmem18 regulates insulin and glucagon-like signaling. J. Endocrinol., 229 (3), 233-243.
Rathjen, T., Yan, X., Kononenko, N.L., Ku, M.C., Song, K., Ferrarese, L., Tarallo, V., Puchkov, D., Kochlamazashvili, G., Brachs, S., Varela, L., et al. (2017). Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1. Nat Neurosci, 20 (8), 1096-1103.
Watson, R.A., Gates, A.S., & Wynn, E.H. (2017). Lyplal1 is dispensable for normal fat deposition in mice. Disease Models & Mechanisms.
Siljee, J.E., Wang, Y., Bernard, A.A., Ersoy, B.A., Zhang, S., Marley, A., Von Zastrow, M., Reiter, JF., & Vaisse, C.(2018). Subcellular localization of mc4r with adcy3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat Genet.
Xu, H. (2013). Obesity and metabolic inflammation. Drug Discov. Today Dis. Mech., 10 (1-2), 21-25.
Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444 (7121), 860-867.
Sun, K., Kusminski, C.M., & Scherer, P.E. (2011). Adipose tissue remodeling and obesity. J. Clin. Invest., 121 (6), 2094-1101.
Cristina Oana, Margineana, Claudiu, Marginean, Mihaela, Iancuc, Valeriu, G., Moldovand, Lorena, Elena Melita, Claudia, Banescu (2019).The impact of TNF-a308G>A genepolymorphism on children’s overweight riskand an assessment of biochemical variables: A cross-sectional single-center experience. Pediatrics and Neonatology, 60, 19-27.
Arner, E., Ryde´n, M., & Arner, P.(2010). Tumor necrosis factor alpha and regulation of adipose tissue. N. Engl. J. Med., 362, 1151-1153.
Chang, W.T., Wang, Y.C., Chen, C.C., Zhang, S.K., Liu, C.H., Chang, F.H., et al. (2012). The -308G/A of tumor necrosis factor (TNF)-a and 825C/t of guanidine nucleotide binding protein 3 (GNB3) are associated with the onset of acute myocardial infarction and obesity in Taiwan. Int. J. Mol. Sci., 13, 1846-1857.
Goodarzi, M.O., Nagpal, T., Greer, P., Cui, J., Chen, Y.I., Guo, X., et al. (2019). Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer (CPDPC). Genetic risk score in diabetes associated with chronic pancreatitis versus type 2 diabetes mellitus. Clin. Transl. Gastroenterol., 10 (7), 00057.
Bellin, M.D., Whitcomb, D.C., & Abberbock, J. (2017). Patient and disease characteristics associated with the presence of diabetes mellitus in adults with chronic pancreatitis in the United States. Am. J. Gastroenterol., 112, 1457-1465.
Gastaldelli, A., Ferrannini, E., & Miyazaki, Y. (2004). Beta-cell dysfunction and glucose intolerance: Results from the San Antonio Metabolism (SAM) study. Diabetologia, 47, 31-39.
Chen, C., Cohrs, C.M., & Stertmann, J. (2017). Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol. Metab., 6, 943-957.
Sasikala, M., Talukdar, R., & Pavan Kumar P. (2012). Beta-cell dysfunction in chronic pancreatitis. Dig Dis Sci., 57, 1764-1772.
Mahajan, A., Taliun, D., & Thurner, M. (2018). Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet., 50, 1505-1513.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Medical and Clinical Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.