PROOXIDANT-ANTIOXIDANT BALANCE IN THE BODY OF RATS IN SUBCHRONIC DOXORUBICIN TOXICITY AND ENTEROSORPTION AND FILGRASTIM USE (LITERATURE REVIEW AND RESEARCH RESULTS)

Authors

  • O. O. Shevchuk I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • A. S. Volska I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • O. Z. Yaremchuk I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • Kh. I. Kurylo I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • K. I. Bardakhivska R. KAVETSKY INSTITUTE OF EXPERIMENTAL PATHOLOGY, ONCOLOGY AND RADIOBIOLOGY OF THE NATIONAL ACADEMY OF SCIENCE OF UKRAINE, KYIV
  • V. G. Nikolaev R. KAVETSKY INSTITUTE OF EXPERIMENTAL PATHOLOGY, ONCOLOGY AND RADIOBIOLOGY OF THE NATIONAL ACADEMY OF SCIENCE OF UKRAINE, KYIV
  • K. A. Posokhova I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY

DOI:

https://doi.org/10.11603/mcch.2410-681X.2019.v.i3.10555

Keywords:

prooxidant-antioxidant balance, doxorubicin, enterosorption, filgrastim, rats

Abstract

Introduction. Anthracyclines are among the most effective anti-cancer and cytotoxic drugs along years. Unfortunately, over the years, its cardiotoxic effects and irreversible heart damage with followed congestive heart failure is still unresolved problem for today.

The aim of the study – to estimate the effects of enteral sorption therapy and biosimilar of granulocyte colony stimulating factor (G-CSF) on the oxidative stress indices in Subchronic doxorubicin toxicity.

Research Methods. Subchronic doxorubicin toxicity was modeled on rats, for correction carbon granular oral adsorbent C1 was used alone and in combination with Filgrastim. The indices of oxidative stress development were studied, namely TBA-products, activity of SOD and catalase. Level of reduced glutathione in heart and liver tissues and in blood serum, as well as total antioxidant activity of the blood.

Results and Discussion. Prooxidant-antioxidant imbalance was detected in subchronic doxorubicin toxicity with increased levels of TBA-products in blood serum (in 2.07 times), in the heart tissues (in 2.3 times) and on the liver (in 1.7 times). At the same time, we observed inhibition of endogenic antioxidant defense with suppressed activity of catalase and SOD, and lower level of reduced glutathione, which was expressed the most in the heart tissue predominantly. Enterosorption with C2 promoted a prooxidant-antioxidant balance restore. Combination of C2 with Filgrastim demonstrated the tendency to positive progress of all indices and was significantly better (compared to C2 use only) for the indices of TBA-products catalase activity in the heart tissues and catalase activity in blood serum.

Conclusion. The results of our study are a substantiation for deeper research of capability of enterosorption and G-CSF Filgrastim to ameliorate the anthracyclines side effects.

References

Loar, R.W., Noel, C., Tunuguntla, H., Colquitt, J.L., & Pignatelli, R.H. (2018). State of the art review: Chemo­therapy-induced cardiotoxicity in children. Con­genital Heart Disease, 13 (1), 5-15. Retrieved from: https://doi.org/10.1111/chd.12564

Thorn, C.F., Oshiro, C., Marsh, S., Hernandez-Boussard, T., McLeod, H., Klein, T.E., & Altman, R.B. (2011). Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenetics and Genomics, 21 (7), 440-446. Retrieved from: https://doi.org/10.1097/FPC.0b013e32833ffb56

Chatterjee, K., Zhang, J., Honbo, N., & Karliner, J.S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115 (2), 155-162. Retrieved from: https://doi.org/10.1159/ 000265166

Curigliano, G., Cardinale, D., Dent, S., Crisci­tiello, C., Aseyev, O., Lenihan, D., & Cipolla, C.M. (2016). Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA: A Cancer Journal for Clinicians, 66 (4), 309-325. Retrieved from: https://doi.org/10.3322/caac.21341.

Shevchuk, O.O., Posokhova, E.A., Sakhno, L.A., & Nikolaev, V.G. (2012). Theoretical ground for adsorptive therapy of anthracyclines cardiotoxicity. Experimental Oncology, 34 (4), 314-322.

Mitry, M.A., & Edwards, J.G. (2016). Doxorubicin induced heart failure: Phenotype and molecular mecha­nisms. International Journal of Cardiology. Heart & Vasculature, 10, 17-24. Retrieved from: https://doi.org/10.1016/j.ijcha.2015.11.004

Lipshultz, P.S.E., Scully, R.E., Lipsitz, S.R., Sal­lan, P.S.E., Silverman, L.B., Miller, P.T.L., … Colan, P.S.D. (2010). Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. The Lancet Oncology, 11 (10), 950. Retrieved from: https://doi.org/10.1016/S1470-2045(10)70204-7

Langer, S.W. (2014). Dexrazoxane for the treat­ment of chemotherapy-related side effects. Cancer Management and Research, 6, 357-363. Retrieved from: https://doi.org/10.2147/CMAR.S47238

Yancy, C.W., Jessup, M., Bozkurt, B., Butler, J., Casey, D.E., Colvin, M.M., … Westlake, C. (2016). 2016 ACC/AHA/HFSA Focused Update on New Pharma­cological Therapy for Heart Failure: An Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinic. Circu­lation, 134 (13). Retrieved from: https://doi.org/10.1161/CIR.0000000000000435

Nijst, P., Martens, P., & Mullens, W. (2017). Heart failure with myocardial recovery – the patient whose heart failure has improved: What next? Progress in Cardiovascular Diseases, 60 (2), 226-236. Retrieved from: https://doi.org/10.1016/j.pcad.2017.05.009

Curfman, G. (2019). Stem cell therapy for heart failure. JAMA, 321 (12), 1186. Retrieved from: https://doi.org/10.1001/jama.2019.2617

Halliday, B.P., Wassall, R., Lota, A. S., Khalique, Z., Gregson, J., Newsome, S., … Prasad, S.K. (2019). Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. The Lancet, 393 (10166), 61-73. Retrieved from: https://doi.org/10.1016/S0140-6736(18)32484-X

Yau, T.M., Pagani, F.D., Mancini, D.M., Chang, H.L., Lala, A., Woo, Y.J., … Milano, C.A. (2019). Intramyocardial injection of mesenchymal precursor cells and successful temporary weaning from left ventricular assist device support in patients with advanced heart failure. JAMA, 321 (12), 1176. Retrieved from: https://doi.org/10.1001/jama.2019.2341.

Freudenberger, R.S., Schwarz Jr.,R.P., Brown, J., Moore, A., Mann, D., Givertz, M.M., … Hare, J.M. (2004). Rationale, design and organisation of an efficacy and safety study of oxypurinol added to standard therapy in patients with NYHA class III – IV congestive heart failure. Expert Opinion on Investigational Drugs, 13 (11), 1509-1516. Retrieved from: https://doi.org/10.1517/13543784. 13.11.1509.

Hare, J.M., Mangal, B., Brown, J., Fisher, C., Freudenberger, R., Colucci, W. S., … Schwarz, R.P. (2008). Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF Study. Journal of the American College of Cardiology, 51 (24), 2301-2309. Retrieved from: https://doi.org/10.1016/j.jacc.2008.01.068

Georgiopoulos, G., Chrysohoou, C., Vogiatzi, G., Magkas, N., Bournelis, I., Bampali, S., … Tousoulis, D. (2017). Vitamins in heart failure: Friend or enemy? Current Pharmaceutical Design, 23 (25), 3731-3742. Retrieved from: https://doi.org/10.2174/1381612823666170321094711.

Giam, B., Chu, P.Y., Kuruppu, S., Smith, A.I., Horlock, D., Kiriazis, H., ... & Rajapakse, N.W. (2016). N-acetylcysteine attenuates the development of cardiac fibrosis and remodeling in a mouse model of heart failu­re. Physiological Reports, 4 (7), e12757.

Schupp, N., Schmid, U., Heidland, A., & Stopper, H. (2008). Rosuvastatin protects against oxidative stress and DNA damage in vitro via upregulation of glutathione synthesis. Atherosclerosis, 199 (2), 278-287. Retrieved from: https://doi.org/10.1016/j.athero­sclerosis.2007.11.016

Shevchuk, O.O. (2015). Influence of carbon enterosorbent and granulocyte colony stimulating factor on prooxidant-antioxidant homeostasis in melphalan use. Pharmacology and Drug Toxicology, (4-5), 97-102 [in Ukrainian].

Sakhno, L.A., Yurchenko, O.V., Maslenniy, V.N., Bardakhivskaya, K.I., Nikolaeva, V.V., Ivanyuk, A.A., … Nikolaev, V.G. (2013). Enterosorption as a method to decrease the systemic toxicity of cisplatin. Experimental Oncology, 35 (1), 45-52. Retrieved from: http://dspace.nbuv.gov.ua/handle/123456789/139113

Stefanov, O.V. (2001). Preclinical studies of drugs: methodical instructions (O. V. Stefanov, Ed.). Kyiv: Avicenna. Retrieved from: https://www.twirpx.com/file/537410/ [in Ukrainian].

Schwenkglenks, M., Pettengell, R., Jackisch, C., Paridaens, R., Constenla, M., Bosly, A., … Leonard, R. (2011). Risk factors for chemotherapy-induced neutro­penia occurrence in breast cancer patients: data from the INC-EU Prospective Observational European Neutropenia Study. Supportive Care in Cancer: Official Journal of the Multinational Association of Supportive Care in Cancer, 19(4), 483–490. Retrieved from: https://doi.org/10.1007/s00520-010-0840-y

Shevchuk, O.O., Posokhova, K.A., Sidoren­ko, A.S., Bardakhivska, K.I., Maslenny, V.M., Yushko, L.A., … Nikolaev, V.G. (2014). The influence of enterosorption on some haematological and biochemical indices of the normal rats after single injection of melphalan. Expe­rimental Oncology, 36 (2), 94-100.

Bruslova, K.M. (2013). Tevagrastim use in children with acute leukemia. Onkologia, 15 (1), 51-54 [in Ukrainian].

Kriachok, I.A., & Tytorenko, I.B. (2015). Granulocyte colony stimulating factors at anti-cancer therapy. Klinicheskaia Onkologia, 19 (3), 64-68 [in Ukrainian].

Sanganalmath, S.K., Abdel-Latif, A., Bolli, R., Xuan, Y.-T., & Dawn, B. (2011). Hematopoietic cytokines for cardiac repair: mobilization of bone marrow cells and beyond. Basic Research in Cardiology, 106 (5), 709-733. Retrieved from: https://doi.org/10.1007/s00395-011-0183-y.

Xu, W.H., Son, J., Wang, Y., Yong, X.R., Lian, Q., Majiti, W., … Zhong, C. H. (2006). Granulocyte colony-stimulating factor reduces cardiomyocyte apoptosis and improves cardiac function in adriamycin-induced cardio­myopathy in rats. Cardiovascular Drugs and Therapy, 20 (2), 85-91. Retrieved from: https://doi.org/10.1007/s10557-006-7652-9.

Andreeva, L.I., Kozhemyakin, L.A., & Kishkun, A.A. (1988). Modification of the method of identification of lipid peroxides in test with thiobarbituric acid. Laboratornoe Delo, (11), 41-43 [in Russian].

Chevari, S., Chaba, I., & Sekei, I. (1985). Role of super oxide dismutase in oxidative processes of the cell and method of its identification in biological materials. Laboratornoe Delo, (11), 678-681 [in Russian].

Koroliuk, M.A., Ivanova, L.K., Maiorova, I.G., & Tokareva, V.A. (1988). Method of Identification of catalase’s activity. Klinicheskaia Laboratornaia Diagnostika, (4), 44-47 [in Russian].

Ellman, G.L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82 (1), 70-77.

Stocks, J., Gutteridge, J.M.C., Sharp, R.J., & Dormansy, T.L. (1974). Assay using brain homogenate for measuring the antioxidant activity of biological fluids. Clin. Sci. Mol. Med., 47, 215-222. Retrieved from: https://pdfs.semanticscholar.org/95e8/aa1b7ee7018cdaf8511f0512d0117b10bf1a.pdf.

Grek, O.R., Mishenina, S.V., & Pupyshev, A.B. (2002). Protective effect of enterosgel on rat liver lysosomes during cytostatic treatment. Bulletin of Experimental Biology and Medicine, 134 (10), 413-417 [in Russian].

Ponomoriova, O.V., Pivniuk, V.M., Nosko, M.M., Sakhno, L.O., Dekhtiar, T.V., Nikolaev, V.G., & Che­khun, V.F. (2008). Prophylaxis by carbon enterosorbent of acute and delayed emetogenic toxicity of chemothe­rapeutic treatment of oncological patients. Onkologia, 10 (3), 370-373. Retrieved from http://dspace.nbuv.gov.ua/handle/123456789/11944 [in Ukrainian].

Posokhova, K.A., & Shevchuk, O.O. (2010). Correction of hepatotoxic action of antiretroviral drugs by glutargin and enterosgel. Ukrainian Journal of Clinical and Laboratory Medicine, 5 (4), 130-133 [in Ukrainian].

Nikolaev, V.G., Klishch, I.M., Zhulkevych, I.V., Oleshchuk, O.M., Nikolaeva, V.V., & Shevchuk, O.O. (2009). The use of Enterosgel for prophylaxis of oxidative stress in acute hemorrhage. Bulletin of Scientific Research (Visnyk Naukovykh Doslidzhen), (1), 72-74 [in Ukrainian].

Lushchak, V.I. (2014). Classification of oxidative stress based on its intensity. EXCLI Journal, 13, 922-937. Retrieved from: https://doi.org/10.17877/DE290R-7035

Khaper, N, Kaur, K., Li, T., Farahmand, F., & Singal, P.K. (2003). Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. Molecular and Cellular Biochemistry, 251(1-2), 9-15. Retrieved from: https://doi.org/10.1023/A:1025448908694

Khaper, Neelam, & Singal, P.K. (1997). Effects of afterload-reducing drugs on pathogenesis of antioxidant changes and congestive heart failure in rats. Journal of the American College of Cardiology, 29 (4), 856-861. Retrieved from: https://doi.org/10.1016/S0735-1097(96)00574-8

Rashikh, A., Abul Kalam Najmi, Akhtar, M., Mahmood, D., Pillai, K.K., & Ahmad, S.J. (2011). Protective effects of aliskiren in doxorubicin-induced acute cardiomyopathy in rats. Human and Experimental Toxicology, 30 (2), 102–109. Retrieved from: https://doi.org/10.1177/0960327110369819

Golubtsov, O.Yu., Tyrenko, V.V., Poliakov, A.S., Makiev, R.G., & Shakhnovich, P.G. (2017). Prospects of antioxidants use for prophylaxis of cardiotoxicity, induced by anthracycline antibiotics. Bulletin of Pirogov National Medical & Surgical Center, (2), 121-125 [in Russian].

Kovalenko, V.N., Kalinkina, N.V., & Vatutin, N.T. (2002). Damage of the heart by cytostatics. Donetsk: UkrNTEK [in Russian].

Mamchur, V.I., Shalamai, A.S., Starchenko, M.G., Kravchenko, K.O., & Chernov, E.O. (2005). New drugs of quercetin for prevention of doxorubicin-induced car­diomyopathy in experiment. Medychni Perspektyvy, X (4), 4-8. Retrieved from: https://cyberleninka.ru/article/v/vikoristannya-novih-likarskih-form-kvertsetinu-dlya-profi­laktiki-doksorubitsinovoyi-kardiomiopatiyi-v-eksperimenti [in Ukrainian].

Yan, T.D. (2010). A pharmacological review on intraperitoneal chemotherapy for peritoneal malignancy. World Journal of Gastrointestinal Oncology, 2 (2), 109. Retrieved from: https://doi.org/10.4251/wjgo.v2.i2.109

Nagai, K., Nogami, S., Egusa, H., & Konishi, H. (2014). Pharmacokinetic evaluation of intraperitoneal doxorubicin in rats. Pharmazie, 69, 125-127. Retrieved from: https://doi.org/10.1691/ph.2014.3754

Published

2019-11-07

How to Cite

Shevchuk, O. O., Volska, A. S., Yaremchuk, O. Z., Kurylo, K. I., Bardakhivska, K. I., Nikolaev, V. G., & Posokhova, K. A. (2019). PROOXIDANT-ANTIOXIDANT BALANCE IN THE BODY OF RATS IN SUBCHRONIC DOXORUBICIN TOXICITY AND ENTEROSORPTION AND FILGRASTIM USE (LITERATURE REVIEW AND RESEARCH RESULTS). Medical and Clinical Chemistry, (3), 13–22. https://doi.org/10.11603/mcch.2410-681X.2019.v.i3.10555

Issue

Section

ORIGINAL INVESTIGATIONS