FEATURES OF INFLUENCE OF HYPERHOMOCYSTEINEMIA ON THE METABOLISM OF SULFUR-CONTAINING AMINO ACIDS IN THE LIVER OF RATS WITH VARIOUS FUNCTIONS OF THYROID GLAND

Authors

  • V. M. Nechiporuk M. Pyrohov Vinnytsia National Medical University
  • N. V. Zaichko M. Pyrohov Vinnytsia National Medical University
  • A. V. Melnik M. Pyrohov Vinnytsia National Medical University
  • E. B. Strutyska M. Pyrohov Vinnytsia National Medical University
  • M. M. Korda I. Horbachevsky Ternopil State Medical University

DOI:

https://doi.org/10.11603/mcch.2410-681X.2019.v0.i1.10028

Keywords:

thyroid hormones, sulfur-containing amino acids, remethylation cycle, transsulfuration pathway, homocysteine, cysteine, hydrogen sulfide

Abstract

Introduction. Homocysteine ​​(Hcy) is a sulfur-containing amino acid that is formed during normal acid biosynthesis of amino acids methionine and cysteine. It is known that thyroid hormones have a significant effect on the function of the cardiovascular system. Patients with thyroid pathologies have a high risk of formation cardiovascular diseases. The level of Hcy in patients with hypothyroidism is higher than in patients with hyperthyroidism. At the same time, it is unclear whether the development of cardiovascular diseases in patients with thyroid gland pathology is associated with changes in the content of Hcy in blood.

The aim of the study to evaluate in the experiment the effect of hyper- and hypothyroidism at hyperhomocysteinemia on remethylation and transulphation of sulfur-containing amino acids in the liver, HCy, cysteine ​​and H2S levels in the serum blood of experimental rats.

Research Methods. The study was performed on white male rats, which were simulated hyperhomocysteinemia (HHcy), hyper- and hypothyroidism, HHcy with different functions of the thyroid gland. The activity of S-adenosylmethionine synthetase (MAT), S-adenosylhomocysteine hydrolase (S-AHH), betaine-homocysteine methyltransferase (BHMT), cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and cysteine transaminase (CGT), γ-glutamylcysteine ligase (GCL), cysteine dioxygenase (CDO), sulfite oxidase (SO) was determined in the liver. Content of HCy, cysteine, H2S was determined in the serum.

Results and Discussion. HHCy leads to inhibition of the activity of enzymes utilizing Hcy in the liver (BHMT, MAT, S-AHH), cysteine oxidation (CDO, GCL, SO) and H2S synthesis (desulfurase activity of CBS, CSE), which led to a significant increase in serum blood levels of Hcy, cysteine ​​and a decrease in the content of H2S. Hyperthyroidism leads to an increase in the activity of most enzymes of the remethylation cycle (BHMT, S-AMS, S-AHH), transsulfuration pathway (CBS, CGL), increased oxidation of cysteine ​​(CDO, GCL, ІO) and led to a decrease in the level of CG and cysteine, growth level of H2S in the blood. Parallel administration of L-thyroxine to animals with HHCy led to a decrease in the activity of enzymes of the remethylation cycle (BHMT, S-AMS, S-AHH), transsulfuration (CDO, GCL, SO) and desulfuration (CBS, CSE), at the same time there was a positive trend in reducing Hcy, cysteine ​​and an increase in the level of H2S in the blood. Hypothyroidism led to a decrease in the liver activity of the enzyme cycle remethylation (BHMT, S-AMS, S-AGH) and transsulfuration processes (CBS, CGL, CAT), an increase in the content of HCy and cysteine ​​and a decrease in the level of H2S. Parallel administration of mercazolile to animals with HHcy led to an increase in the concentration of Hcy in the serum, is a consequence of impaired methylation cycle reactions (S-AMS, S-AHH, BHMT) and transsulfuration (CBS, CGL, CAT) in animals with experimental HHcy.

Conclusions. A high concentrations of HCy and cysteine, a decreasing level of H2S in hypothyroidism can be significant risk factors for the development of atherosclerosis, oxidative stress, endothelial dysfunction and hypercoagulation in diseases accompanied by low levels of thyroid hormones. Our findings are a prerequisite for further experimental studies, which will improve the understanding of the mechanisms of formation of pathological conditions associated with impaired metabolism of sulfur-containing amino acids in HHcy with different thyroid function, and optimize approaches for pharmacotherapy.

References

Bhatia P., Singh N. Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression // Fundam. Clin. Pharmacol. – 2015. – 29, №6. – P.522–528.

Ganguly P. Role of homocysteine in the development of cardiovascular disease / P. Ganguly, S. F. Alam // Nutr. J. – 2015. – 14. – P.6.

Lai W. K. Homocysteine-Induced Endothelial Dysfunction / W. K. Lai, M. Y. Kan // Ann. Nutr. Metab. – 2015. – 67, No. 1. – P. 1–12.

Effects of thyroid hormone withdrawal on metabolic and cardiovascular parameters during radioactive iodine therapy in differentiated thyroid cancer / J. H. An, K. H. Song, D. L. Kim [et al.] // Journal of international medical research. – 2017. – 45, No. 1. – P. 38–50.

Hyperthyroid heart disease / B. M. Fadel, S. Ellahham, M. D. Ringel [et al.] // Clinical Cardiology. – 2000. – 23. – P. 402–408.

Franklyn J. A. Thyrotoxicosis / J. A. Franklyn, K. Boelaert // Lancet. – 2012. – 379. – P. 1155–1166.

Vargas-Uricoechea H. Effects of thyroid hormones on the heart / H. Vargas-Uricoechea, A. Bonelo-Perdomo, C.H. Sierra-Torres // Clinica e investigacion en arteriosclerosis: Publicacion oficial de la Sociedad Espanola de Arteriosclerosis. – 2014. – 26. – P. 296–309.

High-normal thyroid function and risk of atrial fibrillation: The Rotterdam study / J. V. Heeringa, E. H. Hoogendoorn, W. M. Van der Deure [et al.] // Archives of Internal Medicine. – 2008. – 168. – P. 2219–2224.

The association between subclinical hyperthyroidism and blood pressure in a population-based study / H. Volzke, D. Alte, M. Dorr [et al.] // Journal of Hypertension. – 2006. – 24. – P. 1947–1953.

Thyroid peroxidase antibody is associated with plasma homocysteine levels in patients with Graves' disease / F. Li, G. Aji, Y. Wang [et al.] // Exp. Clin. Endocrinol. Diabetes. – 2018. doi: 10.1055/a-0643-4692.

Evaluation of the Interrelationships between Thyroid Function, Autoimmunity, Insulin Resistance and Lipid Profile in Graves' Disease / A. Carujo, C. Neves, J.S. Neves [et al.] // Revista Portuguesa De Endocrinologia Diabetes E Metabolismo. – 2017. – 12, No. 2. – P. 142–150.

Hyperhomocysteinemia,inflammation and autoimmunity / P. E. Lazzerini, P. L. Capecchi, E. Selvi [et al.] // Autoimmunity Reviews. – 2007. – 6. – P.503–509.

Isguven P. Effects of thyroid autoimmunity on early atherosclerosis in euthyroid girls with hashimoto's thyroiditis / P. Isguven, Y. Gunduz, M. Kilic // Journal of Clinical Research in Pediatric Endocrinology. – 2016. – 8, No. 2. – P. 150–156.

Доклінічні дослідження лікарських засобів / за ред. О. В. Стефанова. – К. : Авіцена, 2001. – 528 c.

Stangl G. I. Homocysteine thiolactone-induced hyperhomocysteinemia does not alter concentrations of cholesterol and SREBP-2 target gene mRNAS in rats / G. I. Stangl // Exp. Biol. Med. (Maywood). – 2007. – 232, No. 1. – Р. 81–87.

Нечипорук В. М. Метаболізм цистеїну при експериментальному гіпер- та гіпотиреозі в щурів / В. М. Нечипорук, М. М. Корда // Мед. та клініч. хімія. – 2017. – 19, № 4 (73). – С. 32–40.

Chiang P. K. Activation of methionin for transmethylation. Purification of the S-adenosylmethionine synthetase of bakers’ yeast and its separation into two forms / P. K. Chiang, G. L. Cantoni // J. Biol. Chem. – 1977. – 252, No. 13. – P. 4506–4513.

Isa Y. Effect of vitamin B6 deficiency on S-adenosylhomocysteine hydrolase activity as a target point for methionine metabolic regulation / Y. Isa, H. Tsuge, T. Hayakawa // J. Nutr. Sci. Vitaminol. – 2006. – 52, No. 5. – Р. 302–306.

Ericson L. E. Betaine-homocysteine methyltransferases. III. The methyl donor specificity of the transferase isolated from pig liver / L. E. Ericson // Acta Chemica Scandinavica. – 1960. – 14. – P. 2127–2134.

Dombkowski R. A. Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout / R. A. Dombkowski, M. J. Russell, К. R. Olson // Am. J. Physiol. Regul. Integr. Comp. Physiol. – 2004. – 286, No. 4. – P.678–685.

Orlowski M. Partial reaction by γ-glutamylcysteine synthetase and evidence for an activated glutamate intermediate / M. Orlowski, A. Mrister // J. Biol. Chem. – 1971. – 246, No. 23. – Р. 7095–7105.

Gaitonde M. K. A spectrophotometric method for direct determination of cysteine in the presence of other naturally occuring amino acid / M. K. Gaitonde // Biochem. J. – 1967. – 104, No. 2. – Р. 627–633.

Cohen H. J. Hepatic sulfite oxidase. Purification and properties / H. J. Cohen, I. Fridovich // J. Biol. Chem. – 1971. – 246, No. 2. – Р. 359–366.

Визначення вмісту гідроген сульфіду в сироватці крові / Н. В. Заічко, Н. О. Пентюк, Л. О. Пентюк [та ін.]. // Вісн. наук. дослідж. – 2009. – № 1 (54). – С. 29–32.

Expression of hydrogen sulfide synthases and Hh signaling pathway components correlate with the clinicopathological characteristics of papillary thyroid cancer patients / Y. Xu, N. Ma, P. Wei [et al.] // International journal of clinical and experimental pathology. – 2018. – 11, No. 3. – P. 1818–1824.

REFERENCES

Bhatia, P., & Singh, N. (2015). Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression. Fundam. Clin. Pharmacol, 29 (6), 522-528.

Ganguly, P., & Alam, S.F. (2015). Role of homocysteine in the development of cardiovascular disease. Nutr. J., 14, 6.

Lai, W.K., & Kan, M.Y. (2015). Homocysteine-Induced Endothelial Dysfunction. Ann. Nutr. Metab., 67 (1), 1-12.

An, J.H., Song, K.H., & Kim, D.L. (2017). Effects of thyroid hormone withdrawal on metabolic and cardiovascular parameters during radioactive iodine therapy in differentiated thyroid cancer. Journal of International Medical Research, 45, 1, 38-50.

Fadel, B.M., Ellahham, S., & Ringel, M.D. (2000). Hyperthyroid heart disease. Clinical Cardiology, 23, 402-408.

Franklyn, J.A., & Boelaert, K. (2012). Thyrotoxicosis. Lancet, 379, 1155-1166.

Vargas-Uricoechea, H., Bonelo-Perdomo, A., & Sierra-Torres, C.H. (2014). Effects of thyroid hormones on the heart. Clinica e investigacion en arteriosclerosis: Publicacion oficial de la Sociedad. Espanola de Arteriosclerosis, 26, 296-309.

Heeringa, J.V., Hoogendoorn, E.H., & Van der Deure, W.M. (2008). High-normal thyroid function and risk of atrial fibrillation: The Rotterdam study. Archives of Internal Medicine, 168, 2219-2224.

Volzke, H., Alte, D., & Dorr, M. (2006). The association between subclinical hyperthyroidism and blood pressure in a population-based study. Journal of Hypertension, 24, 1947-1953.

Li, F., Aji, G., & Wang, Y. (2018). Thyroid peroxidase antibody is associated with plasma homocysteine levels in patients with Graves' disease. Exp. Clin. Endocrinol. Diabetes. doi: 10.1055/a-0643-4692.

Carujo, A., Neves, C., & Neves, J.S. (2017). Evaluation of the Interrelationships between Thyroid Function, Autoimmunity, Insulin Resistance and Lipid Profile in Graves' Disease. Revista Portuguesa De Endocrinologia Diabetes E Metabolismo, 12 (2), 142-150.

Lazzerini, P.E., Capecchi, P.L., & Selvi E. (2007). Hyperhomocysteinemia, inflammation and autoimmunity. Autoimmunity Reviews, 6, 503-509.

Isguven, P., Gunduz, Y., & Kilic, M. (2016). Effects of thyroid autoimmunity on early atherosclerosis in euthyroid girls with Hashimoto's thyroiditis. Journal of Cical Research in Pediatric Endocrinology, 8 (2), 150-156.

Stefanov, O.V. (Ed.). (2001). Doklinichni doslidzhennia likarskykh zasobiv [Pre-clinical studies of medical drugs]. Kyiv. Avitsena [in Ukrainian].

Stangl, G.I. (2007) Homocysteine thiolactone-induced hyperhomocysteinemia does not alter concentrations of cholesterol and SREBP-2 target gene mRNAS in rats. Exp. Biol. Med., 232 (1), 81-87.

Nechyporuk, V.M., & Korda, M.M. (2017). Metabolizm tsysteinu pry eksperymentalnomu hiper- ta hipotyreozi v shchuriv [Metabolism of cysteine in experimental hyper- and hypothyroidism in rats]. Medychna ta klinichna khimiia – Medical and Clinical Chemistry, 19 (4), 32-40 [in Ukrainian].

Chiang, P.K., & Cantoni, G.L. (1977). Activation of methionin for transmethylation. Purification of the S-adenosylmethionine synthetase of bakers’ yeast and its separation into two forms. J. Biol. Chem., 252 (13), 4506–-4513.

Isa, Y., Tsuge, H., & Hayakawa, T. (2006). Effect of vitamin B6 deficiency on S-adenosylhomocysteine hydrolase activity as a target point for methionine metabolic regulation. J. Nutr. Sci. Vitaminol, 52 (5), 302-306.

Ericson, L.E. (1960). Betaine-homocysteine methyltransferases. III. The methyl donor specificity of the transferase isolated from pig. Acta Chemica Scandinavica, 14, 2127-2134.

Dombkowski, R.A., Russell, M.J., & Olson, К.R. (2004). Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am. J. Physiol. Regul. Integr. Comp. Physiol, 286 (4), 678-685.

Orlowski, M., & Mrister, A. (1971). Partial reaction by γ-glutamylcysteine synthetase and evidence for an activated glutamate intermediate. J. Biol. Chem., 246 (23), 7095-7105.

Gaitonde, M.K. (1967) A spectrophotometric method for direct determination of cysteine in the presence of other naturally occuring amino acid. Biochem. J., 104 (2), 627-633.

Cohen, H.J., & Fridovich, I. (1971). Hepatic sulfite oxidase. Purification and properties. J. Biol. Chem, 246 (2), 359-366.

Zaichko, N.V., Pentiuk, N.O., Pentiuk, L.O., Melnyk, A.V., & Andrushko, I.I. (2009). Vyznachennia vmistu hidrohen sulfidu v syrovattsi krovi [Determination of hydrogen sulfide in blood serum] Visnyk naukovykh doslidzhen – Bulletin of Scientific Research, 1, 29-32 [in Ukrainian].

Xu, Y., Ma, N., & Wei, P. (2018). Expression of hydrogen sulfide synthases and Hh signaling pathway components correlate with the clinicopathological characteristics of papillary thyroid cancer patients. International Journal of Clinical and Experimental Pathology, 11 (3), 1818-1824.

Published

2019-04-17

How to Cite

Nechiporuk, V. M., Zaichko, N. V., Melnik, A. V., Strutyska, E. B., & Korda, M. M. (2019). FEATURES OF INFLUENCE OF HYPERHOMOCYSTEINEMIA ON THE METABOLISM OF SULFUR-CONTAINING AMINO ACIDS IN THE LIVER OF RATS WITH VARIOUS FUNCTIONS OF THYROID GLAND. Medical and Clinical Chemistry, (1), 103–112. https://doi.org/10.11603/mcch.2410-681X.2019.v0.i1.10028

Issue

Section

ORIGINAL INVESTIGATIONS