ACTIVITY OF BIOENERGY PROCESSES IN THE ORGANISM OF RATS IMMEDIATELY AFFECTED BY CARBOPHOS AND TETRACHLOROMETHANE AND AFTER CORRECTION BY MEXIDOL

  • L. A. Boyko I. HORBACHEVSKY TERNOPIL STATE MEDICAL UNIVERSITY
  • L. S. Fira I. HORBACHEVSKY TERNOPIL STATE MEDICAL UNIVERSITY
  • N. I. Burmas I. HORBACHEVSKY TERNOPIL STATE MEDICAL UNIVERSITY
Keywords: carbophos, carbon tetrachloride, mexidol, succinate dehydrogenase, cytochrome oxidase, glucose, glycogen

Abstract

Introduction. Getting into the human body and animals, organophosphorous substances cause the activation of free radical processes, suppress protective and compensatory forces, inhibit the enzymes involved in the energy supply of cells. Tetrachloromethane, a xenobiotic used in industry, agriculture and everyday life, has a toxic effect on the liver. In real life, there is often a combined effect of several toxic factors, which, depending on the conditions, can disrupt the balance of oxidative processes in the body and lead to serious illnesses.

The aim of the study– to learn the intensity of energy supply processes in the body of rats under the conditions of simultaneous destruction of their organophosphorus compounds and carbon tetrachloride, as well as the effective of using the antioxidant mexidol under the given conditions.

Research Methods. The studies were carried out on white male rats, which daily for 30 days were administered carbophos (20 mg/kg) and tetrachloromethane twice every other day (1 ml/kg). The animals were excised from the experiment under thiopental anesthesia on the 10th and 30th days of carbophosic poisoning and on the 4th and 7th days after the defeat with carbon tetrachloride. In the liver and heart of animals, the activity of succinate dehydrogenase, cytochrome oxidase and glycogen content was determined, and the glucose content in blood serum.

Results and Discussion. During the entire experiment, there was a progressive decrease in succinate dehydrogenase and cytochrome oxidase activity in the liver and myocardium of affected animals, which were the lowest by the end of the study. The content of glucose in the blood serum after the defeat by toxicants was maximized at the end of the experiment. In the same period, the maximum decrease in glycogen content in the liver and myocardium of affected animals was observed. The use of mexidol led to an increase in the activity of mitochondrial enzymes, and also normalized the level of glucose in blood serum and glycogen in the liver and myocardium of affected rats, which confirms its antihypoxic properties.

Conclusions. The combined defeat of rats with tetrachloromethane and carbophos leads to significant disturbances in the energy supply of the organs of the rats. The effective of mexidol as an antihypoxant has been proved.

References

Matkevich, V.A., Lisovik, Zh.A., Luzhnikov, Ye.A., & Aleksandrovskiy, V.N. (2010). Toksikokinetika fosfor­organicheskikh insektitsidov pri ostrykh peroralnykh otravleniyakh i ratsionalnaya taktika detoksikatsii orga­nizma [Toxicokinetics of organophosphorous insecticides for acute oral poisoning and rational tactics of detoxification of the body]. Toksikologicheskiy vestnik – Toxicological Herald, 6 (105), 6-10 [in Russian].

Trusov, N.V., & Uskova, M.A. (2009). Kharak­te­ristika ostrogo toksicheskogo deystviya chetyrekh­khloristogo ugleroda kak modeli okislitelnogo stressa [Characteristic of the acute toxic effect of carbon tetrachloride as a model of oxidative stress]. Toksiko­logi­cheskiy vestnik – Toxicological Herald, 1, 12-17 [in Russian].

Babakov, V.N., Podolskaya, Ye.N., & Goncharov, N.V. (2010). Novyye markery intoksikatsii fosfororganicheskimi soyedineniyami v peptidnoy fraktsii plazmy krovi krys [New markers of intoxication with organophosphorus compounds in the peptide fraction of rat blood plasma]. Toksikologicheskiy vestnik – Toxicological Herald, 2, 30-37 [in Russian].

Voytenko, N.G., Prokofyeva, D.S., & Goncharov, N.V. (2013). Problemy diagnostiki pri intoksikatsii fosforor­ganicheskimi soyedineniyami [Problems of diagnostics during intoxication with organophosphorus compounds]. Toksikologicheskiy vestnik – Toxicological Herald, 5, 2-5 [in Russian].

Zabrodskiy, P.F., Gromov, M.S., & Shekhter, M.S. (2013). Vliyaniye khronicheskoy intoksikatsii fosfororga­nicheskimi insektitsidami na fagotsitarno-metaboli­ches­kuyu aktivnost neytrofilov, pokazateli sistemy immuniteta i soderzhaniye provospalitelnykh tsitokinov v krovi [Influence of chronic intoxication with organophosphorous insecticides on the phagocyte-metabolic activity of neutrophils, indices of the immunity system and the content of pro-inflammatory cytokines in the blood]. Toksiko­logicheskiy vestnik – Toxicological Herald, 1, 28-30 [in Russian].

Karami-Mohajeri, S., & Abdollahi, M. (2011). Toxic influence of organophosphate, carbamate, and organo­chlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review. Hum. Exp. Toxicol., 30 (9),1119–1140.

Shmurak, V.I., Kurdyukov, I.D., & Nadeyev, A.D. (2012). Biokhimicheskiye markery intoksikatsii fosfor­organicheskimi otravlyayushchimi veshchestvami [Bio­chemical markers of intoxication with organophosphorous toxic agents]. Toksikologicheskiy vestnik – Toxicological Herald, 4, 30-34 [in Russian].

Skulachev, V.P. (2009). New data on biochemical mechanism of programmed senescence of organisms and antioxidant defense of mitochondria. Biochemistry, 74 (12), 1718-1721 [in Russian].

Zhidenko, A.A., Bibchuk, U.V., & Barbukho, E.V. (2013). Vliyaniye glifosata na energeticheskiy obmen v organakh karpa [Influence of glyphosate on energy metabolism in carp organs]. Ukrainskyi biokhimichnyi zhurnal – Ukrainian Biochemical Journal, 85 (3), 22-29 [in Ukrainian].

Shiryayeva, A.P., Baydyuk, Ye.V., & Arka­dye­va, A.V. (2007). Sostoyaniye dykhatelnoy tsepi mito­khondriy pecheni krys s eksperimentalnym toksicheskim gepatitom [The state of the liver mitochondrial respiratory chain of rats with experimental toxic hepatitis]. Tsitologiya – Cytology, 49 (2), 52-54 [in Russian].

Novikov, V.E., & Levchenkova, O.S. (2013). Novyye napravleniya poiska lekarstvennykh sredstv s antigipoksicheskoy aktivnostyu i misheni dlya ikh deystviya [New directions in the search for drugs with antihypoxic activity and targets for their action]. Eksperimentalnaya i klinicheskaya farmakologiya – Experimental and Clinical Pharmacology, 76 (5), 37-47 [in Russian].

Stelmakh, V.V., Radchenko, V.G., & Kozlov, V.K. (2011). Metabolicheskiye korrektory na osnove yantarnoy kisloty kak sredstva patogeneticheskoy terapii pri khronicheskikh virusnykh gepatitakh [Metabolic correctors on the basis of succinic acid as a means of pathogenetic therapy in chronic viral hepatitis]. Terapevticheskiy arkhiv – Therapeutic Archive, 2, 67-71 [in Russian].

Gross, D., & Tolba, R. (2015). Ethics in animal-based research. European Surgical Research, 55 (1-2), 43-57.

Ojha, A., Yaduvanshi, S.K., & Srivastava, N. (2011). Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues. Pestic. Biochem. Physiol., 99 (2), 148-156.

Khilchuk, M.A., Yesaulenko, Ye.Ye., Ladutko, A.A., & Bykov, I.M. (2012). Eksperimentalnaya model toksi­cheskogo porazheniya pecheni i sposoby yeye korrektsii [Experimental model of toxic damage of the liver and ways of its correction]. Allergologiya i immunologiya – Allergology and Immunology, 13 (1),131 [in Russian].

Voronina, T.A. (2009). Antioksidant meksidol. Osnovnyye neyropsikhotropnyye effekty i mekhanizm deystviya [Antioxidant mexidol. Major neuropsychotropic effects and mechanism of action]. Psikhofarmakologiya i biologicheskaya narkologiya – Psychopharmacology and Biological Narcology, 6, 2-12 [in Russian].

Rybolovlev, Yu.R., & Rybolovlev, R.S. (1979). Dozirovaniye veshchestv dlya mlekopitayushchikh po konstantam biologicheskoy aktivnosti [Dosage of substances for mammals according to biological activity constants]. Doklady AN SSSR – Reports of the USSR Academy of Sciences, 247 (6), 1513-1516 [in Russian].

Yeshchenko, N.D., & Volskiy, G.G. (1982). Opredeleniye kolichestva yantarnoy kisloty i aktivnosti suktsinatdegidrogenazy [Determination of the amount of succinic acid and the activity of succinate dehydrogenase]. Metody biokhimicheskikh issledovaniy – Methods of Biochemical Research. Leningrad: Leningrad University Publishing House [in Russian].

Krivchenkova, R.S. (1977). Opredeleniye aktivnosti tsitokhromoksidazy v suspenzii mitokhondriy [Determination of cytochrome oxidase activity in the mitochondrial suspension]. Sovremennyye metody v biokhimii – Modern Methods in Biochemistry. Moscow: Meditsina [in Russian].

Alekseyev, V.V., Alipov, A.N., & Andreyev, V.A. (2013). Meditsinskiye laboratornyye tekhnologii: rukovodstvo po klinicheskoy i laboratornoy diagnostike: v 2-kh t. [Medical laboratory technologies: a guide to clinical and laboratory diagnosis: in 2 vol.]. Moscow: Geotar-Media [in Russian].

Lapach, S.N., Chubenko, A.V., & Babich, P.N. (2000). Statisticheskiye metody v mediko-biologicheskikh issledovaniyakh s ispolzovaniyem Yekhsel. Ekspe­ri­mentalnyye issledovaniya. Klinicheskiye ispytaniya. Analiz farmatsevticheskogo rynka [Statistical methods in biomedical research using Excel. Experimental research. Clinical trials. Analysis of the pharmaceutical market]. Kyiv: Morion [in Ukrainian].

Zamorskyi, I.I., Bukataru, Yu.S., & Melnychuk, S.P. (2017). Analiz aktyvnosti suktsynatdehidrohenazy ta laktatdehidrohenazy pry hostrii ta khronichnii hipoksii na foni vvedennia pokhidnoho 2-benzamido-2-(2-okso­indolin-3-iliden) otstovoi kysloty [Analysis of the activity of succinate dehydrogenase and lactate dehydrogenase in acute and chronic hypoxia on the background of the introduction of 2-benzamido-2- (2-oxoindoline-3-ylidene) acetic acid derivative]. Scientific Journal “ScienceRise: Pharmaceutical Science”, 2 (6). 9-13 [in Ukrainian].

Pasevych, S.P., & Zamorskyi, I.I. (2009). Anty­oksydantna ta antyhipoksychna efektyvnist meksydolu pry eksperymentalnii hostrii nyrkovii nedostatnosti u shchuriv za umov khronichnoi hipobarychnoi hipoksii [Antioxidant and antihypoxic efficacy of mexidol in experimental acute renal failure in rats under conditions of chronic hypobaric hypoxia]. Klinichna ta eksperymentalna patolohiia – Clinical and Experimental Pathology, 8 (2), 51-53 [in Ukrainian].

Published
2018-11-08
How to Cite
Boyko, L., Fira, L., & Burmas, N. (2018). ACTIVITY OF BIOENERGY PROCESSES IN THE ORGANISM OF RATS IMMEDIATELY AFFECTED BY CARBOPHOS AND TETRACHLOROMETHANE AND AFTER CORRECTION BY MEXIDOL. Medical and Clinical Chemistry, (3), 101-109. https://doi.org/10.11603/mcch.2410-681X.2018.v0.i3.9575
Section
ORIGINAL INVESTIGATIONS