The effect of silicon dioxide nanoparticles on the lead hepatotoxicity

Authors

  • I. A. Bandas
  • M. I. Kulitska
  • M. M. Korda

DOI:

https://doi.org/10.11603/mcch.2410-681X.2016.v0.i2.6665

Keywords:

nanoparticles, silicon dioxide, lead, rats, hepatotoxicity.

Abstract

Nanoparticles are known to facilitate transport of chemicals and medications through membrane barriers into cells. This results in the raising of toxic effect when two contaminants act on the body at the same time. The aim of this study was to determine how silicon dioxide (SiO2) nanoparticles affect the hepatotoxic properties of lead. Alanine and aspartate transaminases, alkaline phosphatase activities, as well as total protein, total bilirubin, creatinine and urea contents were measured in rat blood plasma. It has been shown that SiO2 nanoparticles did not significantly affect the above listed markers. Administration of lead acetate to the animals caused cytolysis of hepatocytes, as evidenced by significant increase of alanine and aspartate transaminases, alkaline phosphatase activities, along with significant decrease of total plasma protein and increase of total bilirubin levels. The increase of aminotransferases and alkaline phosphatase activities in animals that received both SiO2 nanoparticles and lead acetate was significant compared to the animals that received only lead acetate. This suggests that SiO2 nanoparticles, which are normally present in the environment and food products as contaminants, can enhance the negative hepatotoxic effects of lead.

References

Klestova, Z. S., & Holovko, A. M. (2014). Nanotekhnolohii ta bioryzyky (ohliad literatury) . Nauk.-tekhn. biul. In-tu biolohii tvaryn i Derzh. nauk.-dosl. kontrol. in-tu vetpreparativ ta kormovykh dobavok, 15, 2–3, 329–339.

Mykytiuk, M. V. (2011). Nanochastynky ta perspektyvy yikh zastosuvannia v biolohii i medytsyni . Problemy ekolohii ta medytsyny , 5–6 , 41–49.

Androshchuk, H. O., Berezniak, N. V. & Yamchuk, A. V. (2011). Nanotekhnolohii u KhKhI stolitti: stratehichni priorytety ta rynkovi pidkhody do vprovadzhennia monohrafiia. K. : UkrINTEI, 275.

Bandas, I. A., Korda, M. M., Krynytska, I. Ia., & Kulitska, M. I. (2015). Nanochastynky: vazhlyvist sohodni, klasyfikatsiia, vykorystannia v medytsyni, toksychnist. Med. ta klinich. khimiia, 3 (64), 123–129.

Kozhem’iakin, Iu. M., Filonenko, M. A., Khromov, O. S., & Saifetdinova, H. A. (2002). Naukovo-praktychni rekomendatsii z utrymannia laboratornykh tvaryn ta roboty z nymy . K. Avitsena, 156.

Onyshchenko, H. H., Tutelian, V. A., & Hmoshynskyi, Y. V. (2011). Poriadok y metody otsenky vozdeistvyia yskusstvennыkh nanochastyts y nanomateryalov na toksycheskoe deistvye khymycheskykh veshchestv metod. rek. MR 1.2.0054–11. M. Federalnyi tsentr hyhyeny y epydemyolohyy Rospotrebnadzora, 39.

Trakhtenberh, I. M., Dmytrukha, N. M., & Luhovskyi, S. P. (2015). Svynets – nebezpechnyi poliutant. Problema stara i nova. Such. Probl. toksykolohii, kharchovoi ta khimichnoi bezpeky, 3 (71). 14–24.

Kundiiev, Iu. I., Korda, M. M., Kashuba, M. O., & Demetska, O. V. (2015). Toksykolohiia aerozoliv : monohrafiia. Ternopil : TDMU, 256.

Trakhtenberh, I. M. & Dmytrukha, N. M. (2013). Nanochastynky metaliv, metody otrymannia, sfery zastosuvannia, fizyko-khimichni ta toksychni vlastyvosti. Ukr. zhurn. z probl. medytsyny pratsi, 4 (37). – S. 62–74.

Chekman Y. S. (2014). Nanotekhnolohyy, nanomedytsyna, nanofarmakolohyia, nanofarmatsyia: vnedrenye rezultatov v medytsynskuiu praktyku. Probl. endokrynnoi patolohii, 1, 80–94.

Chekman, I. S., Hovorukha, M. O., & Doroshenko, A. M. (2011). Nanohenotoksykolohiia: vplyv nanochastynok na klitynu . Ukr. med. Chasop, 1 (81), 30–35.

Chernousova, S. & Epplie, M. Nanochastynky v medytsyni. [Elektronnyi resurs]. http://www.nas.gov.ua/text/pdfNews/Chernousova_Epple_nano.pdf.

Douroumis, D., Onyesom, .I, Maniruzzaman, M., & Mitchell, J. (2013). Mesoporous silica nanoparticles in nanotechnology.Crit Rev Biotechnol. ;33(3), 229–245. [PubMed]

European convention for the protection of vertebrate animals used for experimental and other scientific purposes. (1986). Council of Europe, Strasbourg, 56.

Yamashita, K., Yoshioka, Y., & Higashisaka, K. (2011). Silica and titanium dioxide nanoparticles cause pregnancy complications in mice Nature Nanotechnology, 6, 321-328.

Nabeshi, H., Yoshikawa, T., & Matsuyama, K. ( 2011). Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application, 32(11), 2713-2724.

Ying, Zhu. ( 2014). The biocompatibility of nanodiamonds and their application in drug delivery systems. The 7th International Nanotoxicology Congress «NanoTox2014». materials of the conference. Antalya, Turkey, 256.

Yang, X., Liu, J., & He, H. (2010). SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Toxicol. 7 (1), 1-10.

Published

2016-07-15

How to Cite

Bandas, I. A., Kulitska, M. I., & Korda, M. M. (2016). The effect of silicon dioxide nanoparticles on the lead hepatotoxicity. Medical and Clinical Chemistry, (2), 17–21. https://doi.org/10.11603/mcch.2410-681X.2016.v0.i2.6665

Issue

Section

ORIGINAL INVESTIGATIONS