EFFECTS OF BIOLOGICAL ACTION OF MOLECULAR HYDROGEN

Authors

  • O. O. Pokotylo I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • O. S. Pokotylo IVAN PULYUI TERNOPIL NATIONAL TECHNICAL UNIVERSITY
  • M. M. Korda I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY

DOI:

https://doi.org/10.11603/mcch.2410-681X.2023.i2.13980

Keywords:

molecular hydrogen, hydrogen water, oxidative stress, cancer, antioxidants

Abstract

Introduction. The article presents a review of the scientific literature on the effect of molecular hydrogen depending on the ways of introduction on different levels of the body's organization in various pathological conditions. The history of the discovery of molecular hydrogen as a biological agent and the development of hydrogen biomedicine is briefly presented. The molecular, cellular and systemic aspects of the biological action of molecular hydrogen are characterized. The effect of molecular hydrogen on various cell pools and regeneration processes, antioxidant and antiapoptotic effects of molecular hydrogen are revealed. The anti-inflammatory effect and regulation of pyroptosis by molecular hydrogen are described. In this article, the information was analyzed using PubMed, PubChem, ScienceDirect, European Pharmacopoeia and scientific literature databases.

The aim of the study – to analyze the scientific literature and systematize information about the nature of molecular hydrogen and its ways of entry into the body, as well as about the features and mechanisms of molecular, cellular, organ-tissue and systemic biological effects of molecular hydrogen.

Conclusions. Molecular hydrogen is the lightest and most common medical gas, which has a wide range of biological activity and is characterized by antioxidant, anti-inflammatory and anti-apoptotic effects. It is also involved in regulating the expression of numerous genes, protecting biomacromolecules from oxidative damage, stimulating energy production (ATP), etc. At the same time, despite the sharp increase in the number of studies and publications on the biomedical application of molecular hydrogen, the issue of its use as a pro-regenerative agent requires additional study. The use of this molecule has numerous advantages due to the wide range of molecular reactions it induces. Therefore, targeted research in this field can open new horizons of regenerative medicine and create innovative technology for accelerated body recovery.

References

Ichihara, M., Sobue, S., Ito, M., Ito, M., Hi­rayama, M., et al (2015). Beneficial biological effects and the under­lying mechanisms of molecular hydrogen-comprehensive review of 321 original articles. Med. Gas Res., 5, 1-21.

Shen, M., Zhang, H., Yu, C., Wang, F., Sun, X. (2014). A review of experimental studies of hydrogen as a new therapeutic agent in emergency and critical care medicine. Med. Gas Res., 4, 17.

Hirano, S.I., Ichikawa, Y., Kurokawa, R., Takefuji, Y., Satoh, F. (2020). A “philosophical molecule”, hydrogen may overcome senescence and intractable diseases. Med. Gas Res., 10, 47-49.

Tao, G., Song, G., Qin, S. (2019). Molecular hydrogen: Current knowledge on mechanism in alleviating free radical damage and diseases. Acta Biochim. Biophys. Sin., 51, 1189-1197.

Wang, L., Zhao, C., Wu, S., Xiao, G., Zhuge, X., et al. (2018). Hydrogen gas treatment improves the neurological outcome after traumatic brain injury via increasing miR-21 expression. Shock., 50, 308-315.

Wu, J., Wang, R., Yang, D., Tang, W., Chen, Z., et al. (2018). Hydrogen postconditioning promotes survival of rat retinal ganglion cells against ischemia/reperfusion injury through the PI3K. Akt pathway. Bio­chem. Biophys. Res. Commun., 495, 2462-2468.

Hirano, S.-I., Ichikawa, Y., Sato, B., Yamamoto, H., Takefuji, Y., et al. (2021). Molecular Hydrogen as a Potential Clinically Applicable Radioprotective Agent. Int. J. Mol. Sci., 22, 4566.

Hu, Q., Zhou, Y., Wu, S., Wu, W., Deng, Y., et al. (2020). Molecular hydrogen: A potential radioprotective agent. Biomed. Pharmacother., 130 , 110589.

Runtuwene, J., Amitani, H., Amitani, M., Asaka­wa, A., Cheng, K.C., et al. (2015). Hydrogen-water enhances 5-fluorouracil-induced inhibition of colon cancer. PeerJ., 3 , 859.

Hirano, S.-I., Yamamoto, H., Ichikawa, Y., Sato, B., Takefuji, Y., [et al] (2021). Molecular Hydrogen as a Novel Antitumor Agent: Possible Mechanisms Underlying Gene Expression. Int. J. Mol. Sci., 22, 8724.

Wang, D., Wang, L., Zhang, Y., Zhao, Y., Chen, G. (2018). Hydrogen gas inhibits lung cancer progression through targeting SMC. Biomed. Pharmacol., 104, 788–797.

Boyle, R. Tracts written by the honourable Robert Boyle Containing New Experiments Touching the Relation Betwixt Flame And Air: And About Explosions: An Hydrostatical Discourse Occasion’d by Some Objec­tions of Dr. Henry More Against Some Explications of New Experiments Made by the Author of these Tracts: To Which is Annex’t, an Hydrostatical Letter, Dilucidating an Experiment about a Way of Weighing Water in Water; Printed for Richard Davis, Book-Seller in Oxon. 1672. Accessmode:https://quod.lib.umich.edu/e/eebo2/A29057.0001.001/1:21.1?rgn=div2;view=fulltext (accessed on 22 January 2023).

Cavendish, H. XIX. (1766). Three papers, containing experiments on factitious air. Phil. Trans. R. Soc., 56, 141-184.

Beddoes, T. (1793). A Letter to Erasmus Darwin, M.D. On A New Method of Treating Pulmonary Consumption, and Some Other Diseases Hitherto Found Incurable; Bulgin & Rosser: Bristol, UK.

Beddoes, T. (1796). Considerations on the Medicinal Use, and on the Production of Factitious Airs. Ann. Med., 1, 245-265.

Levitt, M.D. (1969). Production and excretion of hydrogen gas in man. N. Engl. J. Med., 281, 122-127.

Dole, M., Wilson, F.R., Fife, W.P. (1975). Hyper­baric hydrogen therapy: A possible treatment for cancer. Science., 190 , 152-154.

Lanphier, E.H. (1972). Human respiration under increased pressures. Symp. Soc. Exp. Biol., 26, 379-394.

Van Haaster, D.J., Hagedoorn, P.L., Jongejan, J.A., Hagen, W.R. (2005). On the relationship between affinity for molecular hydrogen and the physiological directio­na­lity of hydrogenases. Biochem. Soc. Trans., 33, Pt 1, 12-14.

Yanagihara, T., Arai, K., Miyamae, K., Sato, B., Shudo, T., et al. (2005). Electrolyzed Hydrogen-Saturated Water for Drinking Use Elicits an Antioxidative Effect: A Feeding Test with Rats. Biosci. Biotechnol. Biochem., 69, 1985-1987.

Ohsawa, I., Ishikawa, M., Takahashi, K., Wata­nabe, M., Nishimaki, K., et al. (2007). Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med., 13 , 688-694.

Guan, W.J., Chen, R.C., Zhong, N.S. (2020). Stra­tegies for the prevention and management of coro­navirus disease 2019. Eur. Respir. J., 55 , 2000597.

Tian, Y., Zhang, Y., Wang, Y., Chen, Y., Fan, W., et al. (2021). Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis. Front. Physiol., 12, 789507.

Fu, Z., Zhang, J. (2022). Molecular hydrogen is a promising therapeutic agent for pulmonary disease. J. Zhejiang Univ. Sci. B., 23, 102-122.

Guan, W.J., Wei, C.H., Chen, A.L., Sun, X.C., Guo, G.Y., et al. (2020). Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multi­center, open-label clinical trial. J. Thorac. Dis., 12, 3448-3452.

Liu, X., Ma, C., Wang, X., Wang, W., Li, Z., et al. (2017). Hydrogen coadministration slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Int. J. Chron. Obstruct. Pulmon. Dis., 12, 1309-1324.

Zheng, Z.G., Sun, W.Z., Hu, J.Y., Jie, Z.J., Xu, J.F., et al. (2021). Hydrogen/oxygen therapy for the treatment of an acute exacerbation of chronic obstructive pulmonary disease: Results of a multicenter, randomized, double-blind, parallel-group controlled trial. Respir. Res., 22, 149.

Huang, P., Wei, S., Huang, W., Wu, P., Chen, S., et al. (2019). Hydrogen gas inhalation enhances alveolar macrophage phagocytosis in an ovalbumin-induced asthma model. Int. Immunopharmacol., 74, 105646.

LeBaron, T.W., Kura, B., Kalocayova, B., Tribu­lova, N., Slezak, J. (2019). A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules, 24, 2076.

Cole, A.R., Sperotto, F., DiNardo, J.A., Carlisle, S., Rivkin, M.J., et al. (2021). Safety of prolonged inhalation of hydrogen gas in air in healthy adults. Crit. Care Explor., 3, e543.

Asada, R., Tazawa, K., Sato, S., Miwa, N. (2020). Effects of hydrogen-rich water prepared by alternating-current-electrolysis on antioxidant activity, DNA oxidative injuries, and diabetes related markers. Med. Gas Res., 10, 114-121.

Shimouchi, A., Nose, K., Shirai, M., Kondo, T. (2012). Estimation of molecular hydrogen consumption in the human whole body after the ingestion of hydrogen-rich water. Adv. Exp. Med. Biol., 737, 245-250.

Liu, C., Kurokawa, R., Fujino, M., Hirano, S., Sato, B., et al. (2014). Estimation of the hydrogen con­centration in rat tissue using an airtight tube following the administration of hydrogen via various routes. Sci. Rep., 4, 5485.

Kawamura, M., Imamura, R., Kobayashi, Y., Ta­niguchi, A., Nakazawa, S., [et al.] (2020). Oral admi­nistration of Si-based agent attenuates oxidative stress and ischemia-reperfusion injury in a rat model: A novel hydrogen administration method. Front. Med., 7, 95.

Zhao, P.H., Jin, Z.K., Chen, Q., Meng, J., Lu, X., (2018). Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun., 9, 4241.

Kou, Z., Zhao, P.H., Wang, Z.H., Jin, Z., Chen, L., et al. (2019). Acid-responsive H2-releasing Fe nanopar­ticles for safe and effective cancer therapy. J. Mater. Chem. B., 7, 2759-2765.

He, Y., Zhang, B., Chen, Y., Jin, Q., Wu, J. [et al] (2017). Image-guided hydrogen gas delivery for protection from myocardial ischemia-reperfusion injury via micro­bubbles. ACS Appl. Mater. Interfaces, 9, 21190-21199.

Katiukhin, L.N. (2016). Influence of the course of treatment by injections of ozonized saline on rheological properties of erythrocytes in patients with complex pathology. Hum. Physiol., 42, 672-677.

Martusevich, A.K., Peretyagin, S.P., Ruchin, M.V., Struchkov, A.A. (2018). Ozone Therapy in Patients with Burn Disease. J. Biomed. Sci. Eng., 11, 27-35.

Martínez-Sánchez, G., Schwartz, A., Di Donna, V. (2020). Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/COVID-19. Antioxidants., 9, 389.

Zhu, Q., Wu, Y., Li, Y., Chen, Z., Wang, L., et al. (2018). Positive effects of hydrogen-water bathing in patients of psoriasis and parapsoriasis en plaques. Sci. Rep., 8 , 8051.

Asada, R., Saitoh, Y., Miwa, N. (2019). Effects of hydrogen-rich water bath on visceral fat and skin blotch, with boiling-resistant hydrogen bubbles. Med. Gas Res., 9, 68-73.

Oharazawa, H., Igarashi, T., Yokota, T., Fujii, H., Suzuki, H., [et al] (2010). Protection of the retina by rapid diffusion of hydrogen: Administration of hydrogen-loaded eye drops in retinal ischemia-reperfusion injury. Invest. Ophthalmol. Vis. Sci., 51, 487-492.

Zhai, X., Chen, X., Shi, J., Shi, D., Ye, Z. [et al.] (2013). Lactulose ameliorates cerebral ischemia-reper­fusion injury in rats by inducing hydrogen by activating Nrf2 expression. Free Radic. Biol. Med., 65, 731-741.

Zhang, M., Xu, Y., Zhang, J., Sun, Z., Ban, Y., et al. (2021). Application of methane and hydrogen-based breath test in the study of gestational diabetes mellitus and intestinal microbes. Diabetes Res. Clin. Pract., 176, 108818.

Jahng, J., Jung, I.S., Choi, E.J., Conklin, J.L., Park, H. (2012). The effects of methane and hydrogen gases produced by enteric bacteria on ileal motility and colonic transit time. Neurogastroenterol. Motil., 24, 185-e92.

Ge, L., Qi, J., Shao, B., Ruan, Z., Ren, Y., et al. (2022). Microbial hydrogen economy alleviates colitis by reprogramming colonocyte metabolism and reinforcing intestinal barrier. Gut Microbes., 14, 2013764.

Li, Q., Kato, S., Matsuoka, D., Tanaka, H., Miwa, N. (2013). Hydrogen water intake via tube- feeding for patients with pressure ulcer and its reconstructive effects on normal human skin cells in vitro. Med. Gas Res., 3, 20.

Cui, Y., Zhang, H., Ji, M., Jia, M., Chen, H., et al. (2014). Hydrogen-rich saline attenuates neuronal ische­mia-reperfusion injury by protecting mitochondrial function in rats. J. Surg. Res., 192, 564-572.

Ostojic, S.M. (2015). Molecular Hydrogen in Sports Medicine: New Therapeutic Perspectives. Int. J. Sports Med., 36, 273-279.

Noda, K., Shigemura, N., Tanaka, Y., Kawamu­ra, T., Hyun Lim, S., [et al] (2013). A novel method of preserving cardiac grafts using a hydrogen-rich water bath. J. Heart Lung Transpl., 32, 241-250.

Sano, M., Ichihara, G., Katsumata, Y., Hiraide, T., Hirai, A., [et al] (2020). Pharmacokinetics of a single inhalation of hydrogen gas in pigs. PLoS ONE, 15, e0234626.

Sobue, S., Yamai, K., Ito, M., Ohno, K., Iwamoto T. (2015). Simultaneous oral and inhalational intake of molecular hydrogen additively suppresses signaling pathways in rodents. Mol. Cell Biochem. , 403 , 231-241.

Genestra, M. (2007). Oxyl radicals, redox-sen­sitive signalling cascades and antioxidants. Cell Signal., 19, 1807-1819.

Sies, H. (2015). Oxidative stress: A concept in redox biology and medicine. Redox Biol., 4, 180-183.

Dan Dunn, J., Alvarez, L.A., Zhang, X., Soldati, T. (2015). Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol., 6, 472-485.

Liu, Y., Fiskum, G., Schubert, D. (2002). Genera­tion of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem., 80, 780-787.

Halliwell, B., Gutteridge, J. (2015). Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK.

Grassi, D., Desideri, G., Ferri, L., Aggio, A., Tiberti S., [et al] (2010). Oxidative stress and endothelial dysfunction: Say no to cigarette smoking! Curr. Pharm. Des., 16, 2539-2550.

Harma, M.I., Harma, M., Erel, O. (2006). Measu­ring plasma oxidative stress biomarkers in sport medicine. Eur. J. Appl. Physiol., 97, 505-508.

Kim, Y.W., Byzova, T.V. (2014). Oxidative stress in angiogenesis and vascular disease. Blood, 123, 625-631.

Tanriverdi, H., Evrengul, H., Kuru, O.,Tanriverdi, S., Seleci, D., Enli, Y., Kaftan, A.H., Kilic, M. (2006). Cigarette smoking induced oxidative stress may impair endothelial function and coronary blood flow in angiographically normal coronary arteries. Circ. J., 70, 593-599.

Burton, G.J., Jauniaux, E. (2011). Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol., 25, 287-299.

Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H.J., Nagano, T. (2003). Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem., 278, 3170-3175.

Ohta, S. (2014). Molecular hydrogen as a pre­ventive and therapeutic medical gas: Initiation, deve­lopment and potential of hydrogen medicine. Pharmacol. Ther., 144, 1-11.

Ohta, S. (2015). Molecular hydrogen as a novel antioxidant: Overview of the advantages of hydrogen for medical applications. Methods Enzymol., 555, 289-317.

Gharib, B., Hanna, S., Abdallahi, O.M., Lepidi, H., Gardette, B., et al. (2001). Anti-inflammatory properties of molecular hydrogen: Investigation on parasite-induced liver inflammation. Comptes Rendus Acad. Sci. III, 324, 719-724.

Zhang, H.Q., Davies, K.J.A., Forman, H.J. (2015). Oxidative stress response and Nrf2 signaling in aging. Free Radic. Biol. Med., 88, 314-336.

Xie, K.L., Zhang, Y., Wang, Y.Q., Meng, X., Wang, Y., et al. (2020). Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation. Inflamm. Res., 69, 697-710.

Yu, Y., Yang, Y.Y., Yang, M., Wang, C., Xie, K., et al. (2019). Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2/ HO-1-dependent pathway. Int. Immunopharmacol., 69, 11-18.

Cai, W.W., Zhang, M.H., Yu, Y.S., Cai, J.H. (2013). Treatment with hydrogen molecule alleviates TNFα-induced cell injury in osteoblast. Mol. Cell. Biochem., 373, 1-9.

Shinbo, T., Kokubo, K., Sato, Y., Hagiri, S., Hataishi, R., et al. (2013). Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am. J. Physiol. Circ. Physiol., 305, 542-550.

Forrester, S.J., Kikuchi, D.S., Hernandes, M.S., Xu, Q., et al. (2018). Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res., 122 , 877-902.

Rimessi, A., Previati, M., Nigro, F., Wieckow­ski, M.R., Pinton, P. (2016). Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. Int. J. Biochem. Cell Biol., 81 Pt B, 281-293.

Chen, M., Zhang, J., Chen, Y., Qiu, Y., Luo, Z., et al. (2018). Hydrogen protects lung from hypoxia/re-oxy­genation injury by reducing hydroxyl radical pro­duction and inhibiting inflammatory responses. Sci. Rep., 8, 8004.

Zhao, S., Mei, K., Qian, L., Yang, Y., Liu, W., et al. (2013). Therapeutic effects of hydrogen-rich solution on aplastic anemia in vivo. Cell. Physiol. Biochem., 32, 549-560.

Wang, X., Yu, P., Yang, Y., Liu, X., Jiang, J., et al. (2015). Hydrogen-rich saline resuscitation alleviates inflammation induced by severe burn with delayed resuscitation. Burns, 41, 379-385.

Schulze-Osthoff, K., Los, M., Baeuerle, P.A. (1995). Redox signalling by transcription factors NF-κB and AP-1 in lymphocytes. Biochem. Pharmacol., 50, 735-741.

Shao, A., Wu, H., Hong, Yu., Tu, S., Sun, X., et al. (2016). Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: Possible involvement of NF-κB pathway and NLRP3 inflammasome. Mol. Neurobiol., 53, 3462-3476.

Zhang, G., Li, Z., Meng, C., Kang, J., Zhang, M. et al. (2018). The anti-inflammatory effect of hydrogen on lung transplantation model of pulmonary microvascular endothelial cells during cold storage period. Trans­plantation, 102, 1253-1261.

Radyuk, S.N. (2021). Mechanisms Underlying the Biological Effects of Molecular Hydrogen. Curr. Pharm. Des., 27, 626-735.

Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicol. Pathol., 35, 495-516.

Singh, R., Letai, A., Sarosiek, K. (2019). Regu­lation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 20, 175-193.

Shalini, S., Dorstyn, L., Dawar, S., Kumar, S. (2015). Old, new and emerging functions of caspases. Cell Death Differ., 22, 526-539.

Westphal, D., Kluck, R.M., Dewson, G. (2014). Building blocks of the apoptotic pore: How Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ., 21, 196-205.

Chen, K., Wang, N., Diao, Y., Dong, W., Sun, Y., [et al.] (2017). Hydrogen-rich saline attenuates brain injury induced by cardiopulmonary bypass and inhibits microvascular endothelial cell apoptosis via the PI3K/Akt/GSK3β signaling pathway in rats. Cell. Physiol. Biochem., 43, 1634-1647.

Liu, Y.Q., Liu, Y.F., Ma, X.M., Xiao, Y.D., Wang, Y.B., et al. (2015). Hydrogen-rich saline attenuates skin ischemia/reperfusion induced apoptosis via regu­lating Bax/Bcl-2 ratio and ASK-1/JNK pathway. J. Plast. Reconstr. Aesthetic Surg., 68, 147-156.

Mo, X.Y., Li, X.M., She, C.S., Lu, X.Q., Xiao, C.G., [et al.] (2019). Hydrogen-rich saline protects rat from oxy­gen glucose deprivation and reperfusion-induced apopto­sis through VDAC1 via Bcl-2. Brain Res., 1706, 110-115.

Li, J., Hong, Z.J., Liu, H., Zhou, J., Cui, L., et al. (2016). Hydrogen-rich saline promotes the recovery of renal function after ischemia/ reperfusion injury in rats via anti-apoptosis and anti-inflammation. Front. Pharmacol., 7, 106.

Jiao, Y., Yu, Y., Li, B., Gu, X., Xie, K., et al. (2020). Protective effects of hydrogen-rich saline against experi­mental diabetic peripheral neuro-pathy via activation of the mitochondrial ATP-sensitive potassium channel channels in rats. Mol. Med. Rep., 21, 282-290.

Yang, Y., Liu, P.Y., Bao, W., Chen, S.J., Wu, F.S., [et al] (2020). Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer, 20, 28.

, J.J., Gao, W.Q., Shao, F. (2017). Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 42, 245-254.

Zha, Q.B., Wei, H.X., Li, C.G., Liang, Y.D., Xu, L.H., et al. (2016).ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Front. Immunol., 7, 597.

Nie, C., Ding, X.A.R., Zheng, M., Li, Z., Pan, S., et al. (2021). Hydrogen gas inhalation alleviates myo­cardial ischemia-reperfusion injury by the inhibition of oxidative stress and NLRP3-mediated pyrop- tosis in rats. Life Sci., 272 , 119248.

Yang, Z.F., Klionsky, D.J. (2010). Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol., 22, 124-131.

Maiuri, M.C., Zalckvar, E., Kimchi, A., Kroemer, G. (2007). Self-eating and self-killing: Crosstalk between autophagy and apop-tosis. Nat. Rev. Mol. Cell Biol., 8, 741-752.

Chen, H., Mao, X., Meng, X., Li, Y., Feng, J., et al. (2019). Hydrogen alleviates mitochondrial dysfunction and organ damage via autophagy-mediated NLRP3 inflammasome inactivation in sepsis. Int. J. Mol. Med., 44, 1309-1324.

Wang, Y., Wang, L., Hu, T., Wang, F., Han, Z., et al. (2020). Hydrogen improves cell viability partly through inhibition of autophagy and activation of PI3K/Akt/GSK3β signal pathway in a micro-vascular endo­thelial cell model of traumatic brain injury. Neurol. Res., 42, 487-496.

Adzavon, Y.M., Xie, F., Yi, Y., Jiang, X., Zhang, X., et al. (2022). Long-term and daily use of molecular hydrogen induces reprogramming of liver metabolism in rats by modulating NADP/NADPH redox pathways. Sci. Rep., 12 , 3904.

Kawasaki, H., Guan, J., Tamama, K. (2010). Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials. Biochem. Biophys. Res. Commun., 397, 608-613.

Hasegawa, T., Ito, M., Hasegawa, S., Terani­shi, M., Takeda, K., et al. (2022). Molecular Hydrogen Enhances Proliferation of Cancer Cells That Exhibit Potent Mitochondrial Unfolded Protein Response. Int. J. Mol. Sci., 23, 2888.

Fiorese, C.J., Schulz, A.M., Lin, Y.F., Rosin, N., Pellegrino, M.W., et al. (2016). The Transcription Factor ATF5 Mediates a Mammalian Mitochondrial UPR. Curr. Biol., 26, 2037-2043.

Wu, Z., Senchuk, M.M., Dues, D.J., John­son, B.K., Cooper, J.F., et al. (2018). Mitochondrial unfol­ded protein response transcription factor ATFS-1 pro­motes longevity in a long-lived mitochondrial mutant through activation of stress response pathways. BMC Biol., 16, 147.

Lin, Y.F., Haynes, C.M. (2016). Metabolism and the UPR(mt). Mol. Cell., 61, 677-682.

Zhao, Y.S., An, J.R., Yang, S., Guan, P., Yu, F.Y., et al. (2019). Hydrogen and Oxygen Mixture to Improve Cardiac Dysfunction and Myocardial Pathological Changes Induced by Intermittent Hypoxia in Rats. Oxidative Med. Cell. Longev., 7415212.

Wang, Y.T., Lim, Y., McCall, M.N., Huang, K.T., Haynes, C.M., et al. (2019).Cardioprotection by the mitochondrial unfolded protein response requires ATF. Am. J. Physiol. Heart Circ. Physiol., 317, H472-H478.

Berger, E., Rath, E., Yuan, D., Waldschmitt, N., Khaloian, S., et al. (2016). Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat. Commun., 7, 13171.

Liu, M.-Y., Xie, F., Zhang, Y., Wang, T.-T., Ma, S.-N., [et al.] (2019). Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell diffe­rentiation. Stem Cell Res. Ther., 10, 145.

Fang, W., Wang, G., Tang, L., Su, H., Chen, H., et al. (2018). Hydrogen gas inhalation protects against cutaneous ischaemia/reperfusion injury in a mouse model of pressure ulcer. J. Cell. Mol. Med., 22, 4243-4252.

Buchholz, B.M., Masutani, K., Kawamura, T., Peng, X., Toyoda, Y., et al. (2011). Hydrogen-enriched preservation protects the isogeneic intestinal graft and amends recipient gastric function during transplantation. Transplantation, 92, 985-992.

Deng, L., Du, C., Song, P., Chen, T., Rui, S., et al. (2021). The Role of Oxidative Stress and Antioxi­dants in Diabetic Wound Healing. Oxidative Med. Cell. Longev., 2021, 8852759.

Lin, T.-K., Zhong, L., Santiago, J.L. (2017). Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci., 19, 70.

Litwiniuk, M., Krejner, A., Speyrer, M.S., Gauto, A.R., Grzela, T. (2016). Hyaluronic Acid in Inflam­mation and Tissue Regeneration. Wounds, 28, 78-88.

Werner, S., Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiol. Rev., 83, 835-870.

Dohi, K., Kraemer, B.C., Erickson, M.A., McMil­lan, P.J., Kovac, A., [et al.] (2014). Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury. PLoS ONE, 9, 108034.

Noda, K., Tanaka, Y., Shigemura, N., Kawamu­ra, T., Wang, Y., et al. (2012). Hydrogen-supplemented drinking water protects cardiac allografts from inflam­mation-associated deterioration. Transpl. Int., 25, 1213-1222.

Pokotylo O., Zakharchuk I., Vykhovanets B. (2020). State and prospects of using molecular hydrogen for athletes. Sportyvnyi visnyk Prydniprovia, 1, 443-450 [in Ukrainian].

Pokotylo, O.S., Holovach, P.I., Pokotylo, S.O. (2019). Study of patterns of formation of electron-donating water based on changes in pH and ORP of water in thermoses-ionizers-generators "Living Water". Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka. Ser. Biolohiia. Ternopil: TNPU im. V. Hnatiuka, 4 (78), 24-29 [in Ukrainian].

Xiao, L., Miwa, N. (2017). Hydrogen-rich water achieves cytoprotection from oxidative stress injury in human gingival fibroblasts in culture or 3D-tissue equi­valents, and wound-healing promotion, together with ROS-scavenging and relief from glutathione diminishment. Hum Cell. Apr., 30 (2), 72-87.

Chu, J., Gao, J., Wang, J. (2021). Mechanism of hydrogen on cervical cancer suppression revealed by high throughput RNA sequencing. Oncol Rep., 46, 141.

Kawai, D., Takaki, A., Nakatsuka, A. (2012). Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology., 56, 912-921.

Wang D., Wang L., Zhang Y., Zhao Y., Chen G. (2018). Hydrogen gas inhibits lung cancer progression through targeting SMC3. Biomed Pharmacother., 104, 788-797.

Jiang, Y., Liu, G., Zhang, L. et al. (2018). Therapeutic efficacy of hydrogen rich saline alone and in combination with PI3K inhibitor in non small cell lung cancer. Mol. Med. Rep., 18, 2182-2190.

Chen, J.B., Lu, Y.Y., Xu, K.C. (2020). A narrative review of hydrogen oncology: from real world survey to real world evidence. Med Gas Res., 10, 130.

Madsen, C.D., Sahai, E. (2010). Cancer dissemination – Lessons from leukocytes. Dev Cell., 19, 13-26.

Published

2023-07-11

How to Cite

Pokotylo, O. O., Pokotylo, O. S., & Korda, M. M. (2023). EFFECTS OF BIOLOGICAL ACTION OF MOLECULAR HYDROGEN. Medical and Clinical Chemistry, (2), 102–121. https://doi.org/10.11603/mcch.2410-681X.2023.i2.13980

Issue

Section

ORIGINAL INVESTIGATIONS