METFORMIN EXERTS CARDIOPROTECTION IN ISOPROTERENOL-INDUCED CARDIOMYOPATHY IN RATS

  • H. Ya. Loi I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • B. V. Pavliuk I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • S. B. Kramar I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • M. M. Korda I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
  • O. M. Oleshchuk I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY
Keywords: metformin, isoproterenol, hypertrophy, fibrosis, brain natriuretic peptide

Abstract

Introduction. Due to neuropathy in diabetic patients, the dysfunction of the autonomic nervous system occurs, and cardiac activity undergone excess sympathetic stimulation which is named cardiac autonomic neuropathy. Patients with cardiac autonomic neuropathy are at higher risk of left ventricular hypertrophy and are predisposed to cardiovascular events. It was established that metformin, a first-line agent for the initial pharmacotherapy of type 2 diabetes mellitus, poses significant cardioprotective effects. Nevertheless, its activity in the myocardium, subjecting the increased sympathetic tone, remains poorly investigated.

The aim of the study – to explore the effects of metformin on cardiac remodeling after prolonged isoproterenol administration at a low dose.

Research Methods. To induce cardiomyopathy, Wistar rats were injected intraperitoneally with isoproterenol (Iso – 5 mg/kg) in the continuous presence of metformin (М – 100 mg/kg) or vehicle only for 7 consecutive days. Tissue samples were stained with Hematoxylin&Eosin using standard method. The serum level of brain natriuretic peptide was estimated using the Rat BNP ELISA Kit. Statistical comparison of multiple groups was performed by one-way ANOVA followed by Bonferroni Test using GraphPad Prism version 5.00.

Results and Discussion. The results of investigation demonstrate that metformin treatment significantly aboli­shed cardiac hypertrophy in rats induced by isoproterenol administration at the daily dose 5 mg/kg for 7 days. Anti­hypertrophic effect of the drug was confirmed by its ability to diminish the serum level of brain natriuretic peptide. Structural fibrotic reorganization was prevented as well.

Conclusions. Metformin exerts cardioprotection after prolonged isoproterenol administration at a low dose preventing hypertrophic and fibrotic remodeling and fetal genes reprogramming. Thus, it might be a potential tool in the prevention of cardiac remodeling in patients with sympathetic overactivity.

References

Balcıoğlu, A.S., & Müderrisoğlu, H. (2015). Diabetes and cardiac autonomic neuropathy: Clinical manifestations, cardiovascular consequences, diagnosis and treatment. World J. Diabetes, 6 (1), 80-91. doi: 10.4239/wjd.v6.i1.80.

Aaron, I., Vinik, Raelene, E. Maser, Braxton, D. Mitchell, & Roy Freeman (2003). Neuropatía autonómica en diabetes. Diabetes Care, 26 (5), 1553-1579. doi: 10.2337/diacare.26.5.1553.

Vinik, A.I., Casellini, C., Parson, H.K., Colberg, S.R., & Nevoret, M.L. (2018). Cardiac autonomic neuropathy in diabetes: A predictor of cardiometabolic events. Front Neurosci., 12, 1-11. doi: 10.3389/fnins. 2018.00591.

Pop-Busui, R. (2010) Cardiac autonomic neuropathy in diabetes: A clinical perspective. Diabetes Care, 33 (2), 434-41. doi: 10.2337/dc09-1294.

James, W. Albers. (2014). Diabetic neuropathy: Mechanisms, emerging treatments, and subtypes. Curr. Neurol. Neurosci. Rep., 14 (8), 473-491. doi: 10.1007/s11910-014-0473-5.

Schönauer, M., Thomas, A., Morbach, S., Niebauer, J., Schönauer, U., & Thiele, H. (2008). Cardiac autonomic diabetic neuropathy. Diabetes Vasc. Dis. Res., 5 (4), 336-344. doi: 10.3132/dvdr.2008.047

Aaron, I. Vinik, & Erbas, T. (2013). Diabetic autonomic neuropathy. In Handbook of Clinical Neurology, 117, 279-294.

Singh, J.P., Larson, M.G., O'Donnell, C.J., Wil­­son, P.F., Tsuji, H., Lloyd-Jones, D.M., & Levy, D. (2000). Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am. J. Cardiol., 86 (3), 309-312. doi: 10.1016/S0002-9149(00)00920-6.

(2018). American Diabetes Association. Diabetes 2019 Guidelines. Diabetes Care, 42 (1), 90-102. doi: 10.2337/dc19-S009.

Matthews, D.R., & Neil, H.A.W. (2008). 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med., 359, 1577-1589. doi: 10.1056/NEJMoa0806470.

Kirpichnikov, D., Mcfarlane, S.I., & Sowers, J.R. (2002). Metformin: An update. Ann. Intern. Med., 137, 25-33. doi: 10.7326/0003-4819-137-1-200207020-00009.

Loi, H., Boal, F., Tronchere, H., Cinato, M., Kramar, S., Oleshchuk, O. et al. (2019). Metformin protects the heart against hypertrophic and apoptotic remodeling after myocardial infarction. Front. Pharmacol., 10, 154. doi: 10.3389/fphar.2019.00154.

Siddiqui, M.A., Ahmad, U., Khan, A.A., Ahmad, M., Badruddeen, Khalid, M., et al. (2016). Isoprenaline: A tool for inducing myocardial infarction in experimental animals. Int. J. Pharm., 6 (1), 1318-1326.

Quan, H., Guiyun, W., & LaPointe, M.C. Isoproterenol and cAMP regulation of the human brain natriuretic peptide gene involves Src and Rac. Am. J. Physiol. – Endocrinol. Metab., 278, 1115-23. doi: 10.1152/ajpendo.2000.278.6.E1115.

Brooks, W.W., & Conrad, C.H. (2009). Isoproterenol-induced myocardial injury and diastolic dysfunction in mice: Structural and functional correlates. Comp. Med., 59 (4), 339-343.

Li, L., Zhang, Y., Li, Y., Yu, B., Xu, Y., Zhao, S.D., et al. (2008). Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl. Int., 21 (12), 1181-1189. doi: 10.1111/j.1432-2277.2008.00742.x.

Zhuo, X.Z., Wu, Y., Ni, Y.J., Liu, J.H., Gong, M., Wang, X.H., et al. (2013). Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis, 18 (7), 800-810. doi: 10.1007/s10495-013-0843-5.

Chowdhury, D., Tangutur, A.D., Khatua, T.N., Saxena, P., Banerjee, S.K., Bhadra, M.P. (2013). A proteomic view of isoproterenol induced cardiac hypertrophy: Prohibitin identified as a potential biomarker in rats. J. Transl. Med., 11 (1), 130-143. doi: 10.1186/1479-5876-11-130.

Ocaranza, M.P., Díaz-Araya, G., Chiong, M., Muñoz, D., Riveros, J.P., Ebensperger, R., et al. (2002). Isoproterenol and angiotensin I-converting enzyme in lung, left ventricle, and plasma during myocardial hypertrophy and fibrosis. J. Cardiovasc. Pharmacol., 40 (2), 246-254. doi: 10.1097/00005344-200208000-00010.

Ahmed, A.A., Ahmed, A.A.E., El Morsy, E.M., & Nofal, S. (2018). Dimethyl fumarate interferes with MyD88-dependent toll-like receptor signalling pathway in isoproterenol-induced cardiac hypertrophy model. J. Pharm. Pharmacol., 70 (11), 1521-1530. doi: 10.1111/jphp.13000.

Vanderheyden, M., Bartunek, J., & Goethals, M. (2004). Brain and other natriuretic peptides: Molecular aspects. Eur. J. Heart Fail., 6 (3), 261-268. doi: 10.1016/j.ejheart.2004.01.004.

(2012). Group The Diabetes Prevention Program Research. Long-term safety, tolerability, and weight loss associated with metformin in the diabetes prevention program outcomes study. Diabetes Care, 35 (4), 731-737. doi: 10.2337/dc11-1299.

(2012). The Diabetes Prevention Program Research Group. The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention: An intent-to-treat analysis of the DPP/DPPOS. Diabetes Care, 35 (4), 723-730. doi: 10.2337/dc11-1468.

Isoda, K., Young, J.L., Zirlik, A., MacFarlane, L.A., Tsuboi, N., Gerdes, N., et al. (2006). Metformin inhibits proinflammatory responses and nuclear factor-κB in human vascular wall cells. Arterioscler Thromb. Vasc. Biol., 26 (3), 611-617. doi: 10.1161/01.ATV.0000201938.78044.75.

Sena, C.M., Matafome, P., Louro, T., Nunes, E., Fernandes, R., & Seiça, R.M. (2011). Metformin restores endothelial function in aorta of diabetic rats. Br. J. Pharmacol., 163 (2), 424-437. doi: 10.1111/j.1476-5381. 2011.01230.x.

Saloua, E., Messaoudi Gerard, A., Rongen Niels P. Riksen (2013). Metformin therapy in diabetes: the role of cardioprotection. Curr. Atheroscler. Rep., 15 (4), 314-330. doi: 10.1007/s11883-013-0314-z.

Solskov, L., Løfgren, B., Kristiansen, S.B., Jessen, N., Pold, R., & Nielsen, T.T., et al. (2008). Metformin induces cardioprotection against ischaemia/reperfusion injury in the rat heart 24 hours after administration. Basic Clin. Pharmacol. Toxicol., 103 (1), 82-87. doi: 10.1111/j.1742-7843.2008.00234.x.

Ayala, P., Montenegro, J., Vivar, R., Letelier, A., Urroz, P.A., Copaja, M., et al. (2012). Attenuation of endoplasmic reticulum stress using the chemical chaperone 4-phenylbutyric acid prevents cardiac fibrosis induced by isoproterenol. Exp. Mol. Pathol., 92 (1), 97-104. doi: 10.1016/j.yexmp.2011.10.012.

Gandhi, M.S., Kamalov, G., Shahbaz, A.U., Bhattacharya, S.K., Ahokas, R.A., Sun, Y., et al. (2011). Cellular and molecular pathways to myocardial necrosis and replacement fibrosis. Heart Fail Rev., 16 (1), 23-34. doi: 10.1007/s10741-010-9169-3.

Published
2020-02-05
How to Cite
Loi, H. Y., Pavliuk, B. V., Kramar, S. B., Korda, M. M., & Oleshchuk, O. M. (2020). METFORMIN EXERTS CARDIOPROTECTION IN ISOPROTERENOL-INDUCED CARDIOMYOPATHY IN RATS. Medical and Clinical Chemistry, (4), 169-177. https://doi.org/10.11603/mcch.2410-681X.2019.v.i4.10855
Section
ORIGINAL INVESTIGATIONS