SARS-CoV-2, community-acquired pneumonia, CRP, procalcitonin, ferritin


Introduction. A systemic inflammatory response to infection caused by SARS-CoV-2 is a hallmark of the coronavirus disease Covid-19, with abnormal inflammatory biomarkers in most patients.

The aim of the study – to analyze changes in acute-phase indicators in patients with community-acquired pneumonia caused by SARS-CoV-2 and their dependence on the Charlson comorbidity index.

Research Methods. A retrospective study of the medical records of 208 patients who were hospitalized for community-acquired pneumonia with a negative smear test for the SARS-CoV-2 virus was conducted. The main group consisted of patients with SARS-CoV-2 nucleic acid identification and signs of pneumonia. The severity of pneumonia was calculated according to the PORT scale. The comparison group consisted of patients with SARS-CoV-2 nucleic acid identification and the absence of pneumonia. The level of PSA, transferrin and procalcitonin in blood plasma was determined using an automatic analyzer ROCHE COBAS INTEGRA 400 plus.

Results and Discussion. It was established that the levels of the investigated acute-phase blood parameters in patients with community-acquired pneumonia of all categories of complexity were probably higher than the control data. At the same time, the values ​​of PSA, procalcitonin, and ferritin in group II were probably lower than similar indicators in group III by 77.92 %, 58.93 %, and 83.11 %, respectively, in group IV by 157.76 %, 98.21 %, respectively. It is worth noting the highest values ​​of the investigated acute-phase indicators in patients with community-acquired pneumonia of the 4th category of complexity.

Conclusions. Patients with community-acquired pneumonia caused by SARS-CoV-2 probably have higher values ​​of C-reactive protein, procalcitonin, and ferritin than controls, while the studied indicators probably increase with increasing pneumonia severity category.


Shital Patil, Gajanan Gondhali & Abhijit Acharya (2022). Serial CRP (C-reactive protein) monitoring in COVID-19 pneumonia for the assessment of severity, ventilatory support requirement and predicting early lung fibrosis. J. Medicine, 23, 112-120. DOI: https://doi.org/10.3329/jom.v23i2.60627

Mark B. Pepys & Gideon M. Hirschfield (2003). C-reactive protein: a critical update. J. Clin. Invest., 111 (12), 1805-1812. https://doi.org/10.1172/JCI18921 DOI: https://doi.org/10.1172/JCI200318921

Bikram Das, Divya Joshi, Vineeth, V.K., Naveen, A.S., Gopalakrishnan, Ram (2022). Post-COVID multisystem inflammatory syndrome in adults: a study from a tertiary care hospital in south India. Indian Journal of Medical Research, 156, 669-673. DOI: 10.4103/ijmr.ijmr_70_22 DOI: https://doi.org/10.4103/ijmr.ijmr_70_22

Petrilli, C.M., Jones, S.A., Yang, J., & Rajagopa­lan, H. (2020). Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ, 369, m1966. DOI: https://doi.org/10.1136/bmj.m1966

Patel, P., DeCuir, J., Abrams, J., Campbell, A.P., & Godfred-Cato, S., Belay, E.D. (2021). Clinical charac­teristics of multisystem inflammatory syndrome in adults: A systematic review. JAMA Netw. Open, 4 (9),e2126456 DOI: 10.1001/jamanetworkopen.2021.26456 DOI: https://doi.org/10.1001/jamanetworkopen.2021.26456

Davogustto, G.E., Clark, D.E., Hardison, E., Yanis, A.H., Lowery, B.D. & Halasa, N.B. et al. (2021).Characteristics associated with multisystem inflammatory syndrome among adults with SARS-CoV-2 infection. JAMA Netw Open, 4 (5):e2110323. DOI: 10.1001/jamanetworkopen.2021.10323 DOI: https://doi.org/10.1001/jamanetworkopen.2021.10323

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., & Song, B., Gu, X. et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort. Lancet, 395, 1054-1062. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3

Vazzana, N., Dipaola, F., & Ognibene, S. (2020).Procalcitonin and secondary bacterial infections in COVID-19: Association with disease severity and outcomes. Acta Clin. Belg., 77 (2), 268-272. DOI:10.1080/17843286.2020.1824749. DOI: https://doi.org/10.1080/17843286.2020.1824749

Lansbury, L., Lim, B., Baskaran, V., Lim, W.S. (2020). Co-infections in people with COVID-19: A Systematic Review and Meta-Analysis. J. Infect., 81 (2), 266-275. DOI: 10.1016/j.jinf.2020.05.046 DOI: https://doi.org/10.1016/j.jinf.2020.05.046

Langford, B.J., So, M., Raybardhan, S., Leung, V., & Westwood, D. et al. (2020). Co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect., 26 (12), 1622-1629. DOI: 10.1016/j.cmi.2020.07.016 DOI: https://doi.org/10.1016/j.cmi.2020.07.016

Jin, J.M., Bai, P., He, W., Wu, F., Liu, X.F., & Han, D.M. et al. (2020). Gender differences in patients with COVID-19: focus on severity and mortality. Front. Public Health., 8, 152. DOI: 10.3389/fpubh.2020.00152 DOI: https://doi.org/10.3389/fpubh.2020.00152

Self, W.H., Balk, R.A., Grijalva, C.G., Williams, D.J., Zhu, Y., Anderson, E.J., Waterer, G.W., et al. (2017). Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia. Clin. Infect. Dis., 65 (2), 183-190. DOI: 10.1093/cid/cix317 DOI: https://doi.org/10.1093/cid/cix317

Richards, O., Pallmann, P., King, C., Cheema, Y., Killick, C., Thomas-Jones, E., Harris, J., Bailey, C. & Szakmany, T. (2021). Procalcitonin increase is associated with the development of critical care-acquired infections in COVID-19 ARDS.Antibiotics, 10, 1425 DOI: https://doi.org/10.3390/antibiotics10111425

Miranda van Berkel, Matthijs Kox, Tim Frenzel, Peter Pickkers (2020). Biomarkers for antimicrobial stewardship: a reappraisal in COVID-19 times. Crit. Care Lond. Engl., 24 (1), 600. DOI: 10.1186/s13054-020-03291-w DOI: https://doi.org/10.1186/s13054-020-03291-w

Guan, W.-J., Ni Z.-Y., Hu, Y., Liang, W.-H., Ou, C.-Q. & He, J.-X. et al. (2019). Clinical characteristics of Coronavirus disease 2019 in China. N. Engl. J. Med., 382 (18), 1708-1720. DOI: 10.1056/NEJMoa2002032 DOI: https://doi.org/10.1056/NEJMoa2002032

Alessia Alunno, Francesco Carubbi, Javier Rodríguez-Carrio (2020). Storm, typhoon, cyclone or hurricane in patients with COVID-19? Beware of the same storm that has a different origin. RMD Open, 6 (1), e001295 DOI: 10.1136/rmdopen-2020-001295 DOI: https://doi.org/10.1136/rmdopen-2020-001295

Qiurong Ruan, Kun Yang & Wenxia Wang (2020).Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan. China. Intensive Care Med. 46 (5), 846-848 DOI: 10.1007/s00134-020-05991-x DOI: https://doi.org/10.1007/s00134-020-05991-x

Lim, W.S., van der Eerden, M.M., Laing, R., Boersma, W.G., Karalus, N. & Town, G.I. (2003). Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax, 58 (5), 77-82. DOI: 10.1136/thorax.58.5.377 DOI: https://doi.org/10.1136/thorax.58.5.377

Haupt, T.H., Petersen, J., Ellekilde, G., Klausen, H.H., Thorball, C.W., & Eugen-Olsen, J. (2012).Plasma suPAR level are associated mortality, admission time and Charlson Comorbidity Index in the acutely admitted medical patient: a prospective observation study. Critical Care,16 (4), R130. DOI: 10.1186/cc11434 DOI: https://doi.org/10.1186/cc11434

Quan, H., Li, B., Couris, C.M., Fushimi, K., Graham, P. & Hider, P. (2011). Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol., 173 (6), 676-682. DOI: 10.1093/aje/kwq433 DOI: https://doi.org/10.1093/aje/kwq433

Charlson, M.E., Pompei, P., Ales, K.L., & MacKenzie, C.R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Deve­lopment and validation. J. Chronic Dis., 40, 373-383. DOI: 10.1016/0021-9681(87)90171-8 DOI: https://doi.org/10.1016/0021-9681(87)90171-8

Jehangir, F.Z.N., Jehan, A., Adnan, T., & Sahib, G. (2022).Frequency of Covid pneumonia and trajectory of severe clinical manifestations in Karachi. Pak. J. Med. Dent., 11 (1), 38-43 DOI: https://doi.org/10.36283/PJMD11-1/007 DOI: https://doi.org/10.36283/PJMD11-1/007

Liu, F., Li, L., Xu, M., Wu, J., Luo, D., Zhu, Y. et al. (2020). Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol., 127, 1-5. DOI: 10.1016/j.jcv.2020.104370 DOI: https://doi.org/10.1016/j.jcv.2020.104370

Sahu, B.R., Kampa, R.K., Padhi, A., & Panda, A.K. (2020).C-reactive protein: a promising biomarker for poor prognosis in COVID-19 infection. Clin. Chim. Acta., 509, 91-94. DOI: 10.1016/j.cca.2020.06.013 DOI: https://doi.org/10.1016/j.cca.2020.06.013

Pink, I., Raupach, D., Fuge, J., Vonberg, R.P., Hoeper, M.M., Welte, T., & Rademacher, J. (2021). C-reactive protein and procalcitonin for antimicrobial stewardship in COVID-19. Infection, 49 (5), 935-943. DOI: https://doi.org/10.1007/s15010-021-01615-8

Zhang, J.J., Dong, X., Cao, Y.Y., Yuan, Y.D., Yang, Y.B. & Yan, Y.Q. (2020).Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy, 75,1730-1741. https://doi.org/10.1111/all.14238 DOI: https://doi.org/10.1111/all.14238

Sayit, A.T., Elmali, M., Deveci, A., & Gedikli, O. (2021).Relationship between acute phase reactants and prognosis in patients with or without COVID-19 pneu­monia. Rev. Inst. Med. Trop. Sao Paulo, 63, e51. DOI: 10.1590/S1678-9946202163051. PMID: 34190953; PMCID: PMC8231967. DOI: https://doi.org/10.1590/s1678-9946202163051

Lin, Z., Long, F., Yang, Y., Chen, X., Xu, L., & Yang, M. (2020).Serum ferritin as an independent risk factor for severity in COVID-19 patients. J. Infect., 81, 647-679. DOI: 10.1016/j.jinf.2020.06.053 DOI: https://doi.org/10.1016/j.jinf.2020.06.053

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., & Hu, Y. (2020).Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395, 497-506. DOI: 10.1016/S0140-6736(20)30183-5 DOI: https://doi.org/10.1016/S0140-6736(20)30183-5

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., & Wu, H. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395, 565-574. DOI: 10.1016/S0140-6736(20)30251-8 DOI: https://doi.org/10.1016/S0140-6736(20)30251-8

Parthasarathi, A., Basavaraja, C.K., Arunacha­la, S., Chandran, S., Venkataraman, H., Satheesh, A., Mahesh, P.A. (2022). Comorbidities influence the pre­dictive power of hematological markers for mortality in hospitalized COVID-19 patients. Adv. Respir. Med., 90, 49-59. 10.5603/ARM.a2022.0017 DOI: https://doi.org/10.5603/ARM.a2022.0017



How to Cite

Homeliuk, T. M., & Marushchak, M. I. (2023). DYNAMICS OF ACUTE PHASE BLOOD INDICATORS IN PATIENTS WITH COMMUNITY-ACQUIRED PNEUMONIA CAUSED BY SARS-COV-2. Medical and Clinical Chemistry, (1), 68–74. https://doi.org/10.11603/mcch.2410-681X.2023.i1.13743