Активність каталази та супероксиддисмутази на тлі експериментальної ішемії-реперфузії кінцівки

Автор(и)

  • N. V. Volotovska ДВНЗ “Тернопільський державний медичний університет імені І. Я. Горбачевського МОЗ України”
  • O. Yo. Zarichna ДВНЗ “Тернопільський державний медичний університет імені І. Я. Горбачевського МОЗ України”
  • I. P. Kuzmak ДВНЗ “Тернопільський державний медичний університет імені І. Я. Горбачевського МОЗ України”

DOI:

https://doi.org/10.11603/2414-4533.2019.2.10418

Ключові слова:

ішемічно-реперфузійний синдром, нирка, травма, крововтрата, гемостатичний джгут, каталаза, супероксиддисмутаза

Анотація

Мета роботи: встановити динаміку активності супероксиддисмутази та каталази нирок на тлі модифікацій ішемічнореперфузійного синдрому (ІРС).

Матеріали і методи. У експерименті використовували 210 нелінійних білих щурів-самців віком 5–5,5 місяця. Досліджено динаміку активності антиоксидних ферментів (каталаза (Кат), супероксиддисмутаза (СОД)) у тканині нирки в умовах моделювання модифікацій ішемічно-реперфузійного синдрому (ІРС). Забір зразків тканини здійснювали через 24 години, на 3, 7, 14 доби після травми. Щури виведені з експерименту методом тотального кровопускання з верхівки серця.

Результати досліджень та їх обговорення. У наших моделях ІРС рівень Кат в основному зменшувався в кожному періоді експерименту. Пік активності СОД спостерігався на 1, 3 добу або пригнічення (здебільшого на 3 добу) після експериментального ІРС – згідно з модифікаціями ступенів тяжкості травми. Таким чином, застосування кровоспинного джгута в поєднанні з втратою крові та механічною травмою спричиняли суттєві ураження антиоксидної системи нирок. При цьому навіть одноразове застосування джгута зумовлювало подібні хвилеподібні реакції. Загалом розвиток ІРС супроводжується сильним пригніченням антиоксидної системи нирки.

Посилання

Khanna, A., Cowled, P.A., & Fitridge, R.A. (2005). Nitric oxide and skeletal muscle reperfusion injury: current controversies (research review). Journal of Surgical Research, 1, 128 (1), 98107 https://doi.org/10.1016/j.jss.2005.04.020 PMid:15961106

Wang, W.Z., Baynosa, R.C., & Zamboni, W.A. (2011). Update on ischemia-reperfusion injury for the plastic surgeon: 2011. Plastic and Reconstructive Surgery, 128 (6), 685e-92e. Retrieved from: https://doi.org/10.1097/PRS.0b013e318230c57b PMid:22094770

Van der Spuy L. (2012). Complications of the arterial tourniquet. South Afr. J. Anaesth. Analg., 18 (1), 14-18. Retrieved from: https://doi.org/10.1080/22201173.2012.10872818

Dennis, D.A., Kittelson, A.J., Yang, C.C., Miner, T.M., Kim, R.H., & Stevens-Lapsley J.E. (2016). Does tourniquet use in TKA affect recovery of lower extremity strength and function? A randomized trial. Clin. Orthop. Relat. Res., 474 (1), 69-77. Retrieved from: https://doi: 10.1007/s11999-015-4393-8. https:// www.ncbi.nlm.nih.gov/pubmed/26100254

Cengiz, M., Ulker, P., Bashkurt, O.K., & Cengiz, M. (2009). Influence of tourniquet application on venous blood sampling for serum chemistry, hematological parameters, leukocyte activation and erythrocyte mechanical properties. Clin. Chem. Lab Med., 47 (6), 769-776. Retrieved from: https://doi: 10.1515/ CCLM.2009.157.

Tuncali, B., Boya, H., Kayhan, Z., & Arac, S. (2018). Tourniquet pressure settings based on limb occlusion pressure determination or arterial occlusion pressure estimation in total knee arthroplasty? A prospective, randomized, double blind trial. Acta Orthop. Traumatol. Turc., 52 (4), 256-260. https://doi. org/10.1016/j.aott.2018.04.001

Rao, P.R., & Viswanath, R.K. Cardioprotective activity of silymarin in ischemia-reperfusion-induced myocardial infarction in albino rats. Exp. Clin. Cardiol., 12 (4), 179-87.

Ligeret, H., Brault, A., Vallerand, D., Haddad, Y., & Haddad, P.S. (2008). Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury. J. Ethnopharmacol., 115 (3), 507-514. Retrieved from: https://doi.org/10.1016/j.jep.2007.10.024 PMid:18061382

Senturk, H., Kabay, S., Bayramoglu, G., Ozden, H., Yaylak, F., Yucel, M., Olgun, E.G., & Kutlu, A. (2008). Silymarin attenuates the renal ischemia/reperfusion injury-induced morphological changes in the rat kidney. World J. Urol., 26 (4), 401-407. Retrieved from: https://doi.org/10.1007/s00345-008-0256-1 PMid:18408933

Hou, Y.C., Liou, K.T., Chern, C.M., Wang, Y.H., Liao, J.F., Chang, S., Chou, Y.H., & Shen, Y.C. (2010). Preventive effect of silymarin in cerebral ischemia-reperfusion-induced brain injury in rats possibly through impairing NF-?B and STAT-1 activation. Phytomedicine, 17 (12), 963-973. Retrieved from: https://doi. org/10.1016/j.phymed.2010.03.012 PMid:20833521

Görgülü, A., Kiriş, T., Unal, F., Turkoğlu, U., Küçük, M., Cobanoğlu, S. (2000). Superoxide dismutase activity and the effects of NBQX and CPP on lipid peroxidation in experimental spinal cord injury. Res. Exp. Med. (Berl)., 199 (5), 285-293. Retrieved from: https://doi.org/10.1007/s004330050126

Ergün, Yu., Üremis, M., Kılınç, M., & Alıcı, T. (2016). Antioxidant effect of Legalon(r) SIL in ischemia-reperfusion injury of rat skeletal muscle. Acta Cir. Bras., 31 (4), 264-270. Retrieved from: https://doi. org/10.1590/S0102-865020160040000007 PMid:27168539

Işlekel, S., Işlekel, H., & Güner, G. (1999). Alterations in superoxide dismutase, glutathione peroxidase and catalase activities in experimental cerebral ischemia-reperfusion. Res. Exp. Med., 199, 67-76. Retrieved from: https://doi.org/10.1007/ s004330050121 PMid:10639700

Valko, M., Izakovic, M., Mazur, M., Rhodes, C.J., & Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell Biochem., 266 (1-2), 37-56. Retrieved from: https://doi. org/10.1023/B:MCBI.0000049134.69131.89 PMid:15646026

Yukio, I., Shozo, N., & Masako, Y. (1991). Superoxide dismutase activity in experimental brain tumors – determination by electron spin resonance spectrometry using the spin trap method. Biological Aspects of Brain Tumors. Springer, Tokyo.

Kim, G.W., Lewen, A., & Copin, J. (2001). The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience, 105 (4), 1007-1018. Retrieved from: https://doi.org/10.1016/S0306-4522(01)00237-8

Kleinschnitz, C., Grund, H., & Wingler, K. (2010). Poststroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biology, 8, 1-13. Retrieved from: https://doi.org/10.1371/journal.pbio.1000479 PMid:20877715 PMCid:PMC2943442

Kofler, J., Hurn, P.D., & Traystman, R.J. (2005). SOD1 overexpression and female sex exhibit region-specific neuroprotection after global cerebral ischemia due to cardiac arrest. J. Cereb Blood. Flow. Metab., 25, 11-30. Retrieved from: https://doi.org/10.1038/sj.jcbfm.9600119 PMid:15843790

Rodrigo, R., Fernandez-Gajardo, R., & Gutierrez, R. (2013). Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol. Disord. Drug Targets, 12, 698-714. Retrieved from: https://doi. org/10.2174/1871527311312050015 PMid:23469845

Valko, M., Leibfritz, D., & Moncol, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol., 39, 44-84. Retrieved from: https://doi.org/10.1016/j.biocel.2006.07.001 PMid:16978905

Yan, B.C., Park, J.H., & Ahn, J.H. (2014). Neuroprotection of posttreatment with risperidone, an atypical antipsychotic drug, in rat and gerbil models of ischemic stroke and the maintenance of antioxidants in a gerbil model of ischemic stroke. J. Neurosci. Res., 92, 795-807. Retrieved from: https://doi.org/10.1002/ jnr.23360 PMid:24481585

Zhang, Y.B., Kan, M.Y., & Yang, Z.H. (2009). Neuroprotective effects of N-stearoyltyrosine on transient global cerebral ischemia in gerbils. Brain Res., 1287, 146-156. Retrieved from: https://doi. org/10.1016/j.brainres.2009.06.070 PMid:19563790

Orlova, E.A., & Lazarchuk, O.A. (2010). Aktivnost tsitozolnoy superoksiddismutazyi v tkanyah krys raznogo vozrasta na fone primeneniya parafarmatsevtika “Vin-Vita” [The activity of cytosolic superoxide dismutase in tissues of rats of different ages with the use of parapharmaceutical "Vin-Vita"]. Ukrainskyi zhurnal klinichnoi ta laboratornoi medytsyny – Ukrainian Journal of Clinical and Laboratory Medicine, 5 (3):, 87-90 [in Russian].

Steare, S.E., & Yellon, D.M. (1993). The protective effect of heat stress against reperfusion arrhythmias in the rat. J. Mol. Cell. Cardiol., 25, 71-81. Retrieved from: https://doi.org/10.1006/ jmcc.1993.1163 PMid:8158665 25. Tsymbaliuk, H.Yu. (2018). Dynamika zmin v antyoksydantnoprooksydantnii systemi v tkanynakh nyrok pry travmi orhaniv cherevnoi porozhnyny na foni hipovolemichnoho shoku ta syndromu ishemii-reperfuzii [Dynamics of changes in the antioxidant-prooxidant system in kidney tissues during abdominal trauma on the background of hypovolemic shock and ischemiareperfusion syndrome]. Shpytalna khirurhiia. Zhurnal imeni L.Ya. Kovalchuka – Hospital Surgery. Journal named after L.Ya. Kovalchuk, 3, 63-69. Retrieved from: http://nbuv.gov.ua/ UJRN/shpkhir_2018_3_10

Kashchak, T.V., & Hudyma, A.A. (2018). Intensyvnist protsesiv lipidnoi peroksydatsii ta riven markeriv zapalennia v piznii period kombinovanoi travmy v eksperymenti [Intensity of lipid peroxidation processes and level of inflammatory markers in the late period of combined trauma in the experiment]. Shpytalna khirurhiia. Zhurnal imeni L.Ya. Kovalchuka – Hospital Surgery. Journal named after L.Ya. Kovalchuk, 4, 62-78 [in Ukrainian].

Voronkov, A.V., Pozdnyakov, D.I, Ruri, E.I., & Rybalko, A.E. (2016). Sravneniye antioksidantnoy aktivnosti meksidola pri povrezhdeniyah golovnogo mozga razlichnogo geneza v eksperimente [Comparison of the antioxidant activity of Mexidol in brain damage of various origins in the experiment]. Sovremennye problemy nauki i obrazovaniya – Modern Problems of of Science and Education, 6. Retrieved from: http://www. science-education.ru/ru/article/view?id=25392 [in Russian].

Takhtfooladi, H.A, Takhtfooladi, H.A., (2019). Effect of curcumine on lung injury induced by skeletal muscle ischemia/ reperfusion in rats. Ulus Travma Acil. Derg., 25 (1), 7-11. Retrieved from: https://doi.org/10.5505/tjtes.2018.83616 PMid:30742297

Takhtfooladi, M.A., Takhtfooladi, H.A., Sedaghatfar, H., & Shabani, S. (2015). Effect of low-level laser therapy on lung injury induced by hindlimb ischemia / reperfusion in rats. Lasers Med Sei., 30, 1757-1762. Retrieved from: https://doi.org/10.1007/ s10103-015-1786-6 PMid:26155904

Calapai, G., Squadrito, F., & Rizzo, A. (1995). Multiple actions of the coumarine derivative cloricromene and its protective effects on ischemic brain injury. Naunyn Schmiedebergs Arch. Pharmacol., 351 (2), 209-215. Retrieved from: https://doi. org/10.1007/BF00169335 PMid:7770103

Calapai, G., Marciano, M.C., & Corica, F. (2000). Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur. J. Pharmacol., 401 (3), 349-356. Retrieved from: https://doi.org/10.1016/S0014-2999(00)00466-0

Bilgiç, M.İ., Altun, G., Çakıcı, H., Gideroğlu, K., & Saka, G. (2018). The protective effect of Montelukast against skeletal muscle ischemia / reperfusion injury: An experimental rat model. Turkish Journal of Trauma and Emergency Surgery, 24 (3), 185190. Retrieved from: https://doi.org/10.5505/tjtes.2017.22208 PMid:29786827

Demir, M., Amanvermez, R., & Kamalı Polat, A. (2014). The effect of silymarin on mesenteric ischemia-reperfusion injury. Med. Princ. Pract., 23 (2), 140-144. https://doi. org/10.1159/000356860 PMid:24356575 PMCid:PMC5586953

Aslan, T., Turer, M.D., Joseph, A., & Hill, M.D. (2010). Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. The American J. of Card, 106 (3), 360-368. Retrieved from: https://doi.org/10.1016/j.amjcard.2010.03.032 PMid:20643246 PMCid:PMC2957093

Tarasiuk, V.S., Matviichuk, M.V., & Palamar, I.V. (2017). Pohliady na tymchasovi metody zupynky krovotechi v umovakh boiovykh dii [Views on temporary methods of stopping bleeding in combat]. Visn. vinnytskoho nats. Med. univers. – Bulletin of Vinnytsia National Medical University, 1 (21), 220-227 [in Ukrainian].

Byrne, R.M., Taha, A.G., Avgerinos, E., Marone, L.K., Makaroun, M.S., & Chaer, R.A. (2014). Contemporary outcomes of endovascular interventions for acute limb ischemia. J. Vasc. Surg., 59 (4), 988-995. Retrieved from: https://doi.org/10.1016/j. jvs.2013.10.054 PMid:24360240

Fukuda, I., Chiyoya, M., Taniguchi, S., & Fukuda, W. (2015). Acute limb ischemia: contemporary approach. Gen. Thorac. Cardiovasc. Surg., 63 (10), 540-548. Retrieved from: https://doi. org/10.1007/s11748-015-0574-3 PMid:26232356

Tsymbaliuk, H.Iu. (2018). Stan dobovoho diurezu nyrok v umovakh ishemichno-reperfuziinoho syndromu kintsivok, travmy orhaniv cherevnoi porozhnyny, uskladnenoi hipovolemichnym shokom, ta yikh poiednannia u rannomu periodi travmatychnoi khvoroby [Condition of diurnal diuresis of the kidneys in conditions of ischemic-reperfusion limb syndrome, trauma of the abdominal organs complicated by hypovolemic shock, and their combination in the early period of traumatic disease]. Zdobutky klinichnoi i eksperymentalnoi medytsyny – Achievements of Clinical and Experimental Medicine, 3, 163-169 [in Ukrainian].

Salvadori, M., Rosso, G., & Bertoni, E. (2015). Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J. Transplant., 5, 52-67. Retrieved from: https://doi.org/10.5500/wjt.v5.i2.52 PMid:26131407 PMCid:PMC4478600

##submission.downloads##

Опубліковано

2019-09-10

Як цитувати

Volotovska, N. V., Zarichna, O. Y., & Kuzmak, I. P. (2019). Активність каталази та супероксиддисмутази на тлі експериментальної ішемії-реперфузії кінцівки. Шпитальна хірургія. Журнал імені Л. Я. Ковальчука, (2), 53–59. https://doi.org/10.11603/2414-4533.2019.2.10418

Номер

Розділ

ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ