СИНТЕЗ БІОЛОГІЧНО АКТИВНИХ СПОЛУК

Рекомендована д. фармац. наук, проф. Р. Б. Лесиком УДК 547.857.4.03/.04.057

СИНТЕЗ ТА ФІЗИКО-ХІМІЧНІ ВЛАСТИВОСТІ РЯДУ 7-АРИЛАЛКІЛ-8-ТІОЗАМІЩЕНИХ 1,3-ДИМЕТИЛКСАНТИНУ

©Д. Б. Коробко

Тернопільський державний медичний університет імені І. Я. Горбачевського

Резюме: розроблені препаративні методи синтезу ряду неописаних у літературі 7-арилалкіл-8-тіоалкілтеофілінів як потенційних біологічно активних речовин. Обговорено їх спектральні характеристики.

Ключові слова: синтез, 1,3-диметилксантин, алкілування, 7-арилалкіл-8-тіоалкілтеофіліни.

Вступ. Постійне перебування людини в умовах техногенної цивілізації провокує як виникнення стресу, так і надлишкове утворення вільних радикалів, що призводить до розвитку патологічних змін в організмі. Важливу роль в регуляції окисно-відновної рівноваги відіграє тіол-дисульфідна система (ТДС), провідна ланка біохімічних механізмів більшості фізіологічних процесів і вагомий компонент різних імунних підсистем та неспецифічного захисту організму [1, 2]. Складовими тіол-дисульфідної системи є SS- і SH-групи білків, глутатіон, ферменти глутатіон-(пероксидаза, редуктаза, трансфераза) [3]. Враховуючи вирішальне значення тіольних сполук в механізмі ендогенного антиоксидантного захисту, пошуку перспективних у фармакологічному відношенні речовин мають передувати синтетичні дослідження серед 7-заміщених-8-меркаптотеофілінів.

Методи дослідження. Хромато-мас-спектральні дослідження одержаних речовин виконували на високоефективному рідинному хроматографі Agilent 1100 Series, обладнаному діодно-матричним та мас-селективним детекторами Agilent LC/MSD SL. Спосіб іонізації – хімічна іонізація при атмосферному тиску (APCI). Спектри ¹Н ЯМР синтезованих сполук були записані на спектрометрі Varian Mercury 400 (400 МГц), розчинник ДМСО-d₆, внутрішній стандарт – тетраметилсилан.

Результати й обговорення. З метою виконання запланованих синтетичних досліджень вихідні 8-меркапто-7-(4-метоксифенетил-(1), 3фенілпропіл-(2), 3-фенілаліл-(3))-1,3-диметил-1Н-пурин-2,6(3Н,7Н)-діони одержані за відповідною методикою [4] взаємодією 8-бромо-7-(4-метоксифенетил-, 3-фенілпропіл-, 3-фенілаліл-) -1,3-диметил-1*H*-пурин-2,6(3*H*,7*H*)-діонів з трикратним надлишком динатрій сульфіду нонагідрату при тривалому нагріванні у середовищі диметилформаміду (ДМФА). Показано, що після закінчення реакцій вміст колб в гарячому вигляді необхідно переносити у посудини з водою, суміші збовтувати, фільтрувати й у охолоджених до кімнатної температури фільтратах за допомогою кислоти сульфатної створювати рН 1-2. Осади цільових сполук 1-3, що утворюються, слід відфільтровувати та висушувати.

Для *S*-алкілування 7-арилалкіл-8-меркаптотеофілінів (**1-3**) відповідними галоїдними алкілами можна використати як різні розчинники (спирти, діоксан, ДМФА тощо), так і додаткові необхідні компоненти (натрій металічний, луги, натрію гідрогенкарбонат та інше) [5, 6]. Шляхом експериментальних досліджень встановлено, що оптимальними умовами даної хімічної взаємодії є проведення реакцій в середовищі ДМФА при кип'ятінні протягом 120-150 хвилин за наявності еквімолекулярних кількостей натрій гідрогенкарбонату.

 $R = CH_2-C_6H_4-OCH_3-4$, $CH_2-CH_2-C_6H_5$, $CH=CH-C_6H_5$; $R_1 = CH_3$, $CH=CH_2$, C_2H_5 , $n-C_3H_7$, $i-C_3H_7$, $n-C_4H_9$, $i-C_4H_9$, $n-C_5H_{11}$.

ISSN 2312-0967. Фармацевтичний часопис. 2014. № 1

Synthesis of biologically active compounds

За таких умов цільові 7-арилалкіл-8-алкілтіотеофіліни (**4-23**) вдалось одержати з найвищими виходами.

Синтезовані сполуки – білі (5, 7, 8, 11-14, 16-19, 21, 22), блідо-жовті (4, 9), жовтувата (15), світло-коричневі (6, 10), коричневі (20, 23) кристалічні речовини, розчинні в ДМФА, діоксані, спиртах, мало або дуже малорозчинні у воді (табл. 1).

Індивідуальність новостворених субстанцій підтверджена хромато-мас-спектрометрично. В хромато-мас-спектрах (APCI) сполук **4-23** заресстровані позитивні іони [M+1] та [M+3], причому останній характеризує «ізотопний профіль» атому Сульфуру і однозначно підтверджує їх будову.

Для доведення структури синтезованих речовин використано метод ПМР-спектроскопії. Так, піримідиновий фрагмент їх молекул характеризується двома інтенсивними синглетами при 3,45-3,35 м.ч. та 3,31-3,18 м.ч., що зумовлені резонансом N-CH₃ протонів у положеннях 1 і 3 відповідно. Для одержаних сполук характерис-

тичним є сигнал протонів N7-CH₂-групи при 4,99-4,17 м.ч., який залежно від протонного оточення резонує як дублет (6, 10, 13, 16, 19, 22) або триплет (4, 5, 7-9, 11, 12, 14, 15, 17, 18, 20, 21, 23). Як свідчать наведені в таблиці 2 дані, наявність S-CH₂-групи в положенні 8 у більшості випадків підтверджує триплет відповідної інтенсивності при 3,26-3,01 м.ч. Однак в ПМР-спектрі сполуки 16 зареєстровані два однопротонних синглети при 3,31 м.ч. та 3,17 м.ч., відповідно, що ідентифікують протони метиленової групи ізобутильного радикалу. Для речовини 7, яка в 8 положенні містить алільний фрагмент, S-CH₂-група резонує у вигляді мультиплету при 3,79 м.ч. Протони метокси-групи сполук 4, 7, 8, 11, 14, 17, 20, 23 зареєстровані у вигляді синглету при 3,74-3,69 м.ч., що чітко підтверджує особливості їх хімічної структури. Ароматичні та аліфатичні протони речовин 4-23 характеризуються відповідною мультиплетністю, яка залежить від протонного оточення, а їх величини хімічного зсуву цілком корелюють з даними літератури [7].

Таблиця 1. Функціональні похідні 8-меркапто-7-(4-метоксифенетил-, 3-фенілпропіл-, 3-фенілаліл)- 1,3-диметил-1H-*пурин-2,6(3*H,*7*H)-*діонів*

$$O$$
 N
 N
 R
 R
 R
 R

4-23

№ 3/π	Сполука	R	\mathbf{R}_1	Вихід, %	Т. пл., °С	Емпірична формула
1	4	CH ₂ -C ₆ H ₄ -OCH ₃ -4	CH ₃	91,04	118-119	$C_{18}H_{22}N_4O_3S$
2	5	CH_2 - CH_2 - C_6H_5	CH ₃	91,82	91-93	$C_{18}H_{22}N_4O_2S$
3	6	$CH=CH-C_6H_5$	CH ₃	87,53	97-99	$C_{18}H_{20}N_4O_2S$
4	7	CH_2 - C_6H_4 - OCH_3 - 4	CH=CH ₂	85,38	109-110	$C_{19}H_{22}N_4O_3S$
5	8	CH_2 - C_6H_4 - OCH_3 - 4	CH ₂ -CH ₃	93,95	86-87	$C_{19}H_{24}N_4O_3S$
6	9	CH_2 - CH_2 - C_6H_5	CH ₂ -CH ₃	93,96	82-84	$C_{19}H_{24}N_4O_2S$
7	10	$CH=CH-C_6H_5$	CH ₂ -CH ₃	89,61	95-96	$C_{19}H_{22}N_4O_2S$
8	11	CH_2 - C_6H_4 - OCH_3 - 4	CH ₂ -CH ₂ -CH ₃	75,30	78-79	$C_{20}H_{26}N_4O_3S$
9	12	CH_2 - CH_2 - C_6H_5	CH ₂ -CH ₂ -CH ₃	92,71	87-89	$C_{20}H_{26}N_4O_2S$
10	13	$CH=CH-C_6H_5$	CH ₂ -CH ₂ -CH ₃	87,38	109-111	$C_{20}H_{24}N_4O_2S$
11	14	CH_2 - C_6H_4 - OCH_3 -4	CH(CH ₃) ₂	91,47	101-102	$C_{20}H_{26}N_4O_3S$
12	15	CH_2 - CH_2 - C_6H_5	CH(CH ₃) ₂	81,93	47-49	$C_{20}H_{26}N_4O_2S$
13	16	$CH=CH-C_6H_5$	CH(CH ₃) ₂	76,98	103-105	$C_{20}H_{24}N_4O_2S$
14	17	CH_2 - C_6H_4 - OCH_3 - 4	CH ₂ -CH ₂ -CH ₂ -CH ₃	90,62	82-83	$C_{21}H_{28}N_4O_3S$
15	18	CH_2 - CH_2 - C_6H_5	CH ₂ -CH ₂ -CH ₂ -CH ₃	93,62	75-77	$C_{21}H_{28}N_4O_2S$
16	19	$CH=CH-C_6H_5$	CH ₂ -CH ₂ -CH ₂ -CH ₃	84,31	88-90	$C_{21}H_{26}N_4O_2S$
17	20	CH_2 - C_6H_4 - OCH_3 - 4	CH ₂ -CH(CH ₃) ₂	82,93	68-70	$C_{21}H_{28}N_4O_3S$
18	21	CH_2 - CH_2 - C_6H_5	CH ₂ -CH(CH ₃) ₂	89,46	69-71	$C_{21}H_{28}N_4O_2S$
19	22	CH=CH-C ₆ H ₅	CH ₂ -CH(CH ₃) ₂	66,91	92-94	$C_{21}H_{26}N_4O_2S$
20	23	CH_2 - C_6H_4 - OCH_3 - 4	CH ₂ -CH ₂ -CH ₂ -CH ₃	87,09	71-72	$C_{22}H_{30}N_4O_3S$

Synthesis of biologically active compounds

Експериментальна частина

Загальна методика синтезу 8-алкілтіо-7арилалкіл-1,3-диметил-1H-пурин-2,6(3H,7H)діонів (4-23)

Суміш 0,0024 моль відповідного 7-арилалкіл-8-меркаптотеофіліну (1-3), 0,0024 моль відповідного галоїдного алкілу та 0,0024 моль натрій гідрогенкарбонату Р в 8-10 мл диметилформаміду Р кип'ятять протягом 2-2,5 годин. Одержані коричневі розчини охолоджують до кімнатної температури й виливають у 150 мл води Р. Осади цільових продуктів реакцій відфільтровують, висушують. Для аналізу очищують перекристалізацією із 96 % спирту Р або суміші 96 % спирт Р – вода Р, 1,5(2) : 1.

Фізико-хімічні константи цільових продуктів реакцій наведено в таблицях 1, 2.

Висновки. 1. Поповнено комбінаторні бібліотеки 7,8-дизаміщених 1,3-диметилксантину новоствореними 7-арилалкіл-8-тіоалкілтеофілінами.

2. Встановлено їх фізико-хімічні константи; індивідуальність і будову синтезованих сполук доведено за допомогою методів хромато-масспектрометрії та ПМР-спектроскопії.

Таблиця 2. Результати ПМР-спектроскопічного аналізу ряду оригінальних 7,8-дизаміщених теофіліну

4-23

	. 20					
		Величини хімічного зсуву, м.ч.				
No	Спо-		N^1 -CH ₃ ,			
3/П	лука	N^7 -R	N^3 -CH ₃	-S-CH ₂ -	$-S-CH_2-R_1$	
	-		(3H, c)	2	2 1	
1	2	3	4	5	6	
1	4	4,28т (2H, N^7 -С \underline{H}_2 -); 2,91т (2H, -С \underline{H}_2 -С ₆ H ₄); 7,02д (2H,	3,39;	3,11кв	1,23т (3H, -CH ₂ -C <u>H</u> ₃)	
		$C^{2}\underline{H}$, $C^{6}\underline{H}$ -аром.); 6,81д (2H, $C^{3}\underline{H}$, $C^{5}\underline{H}$ -аром.); 3,69с (3H, -	3,22	(2H)		
		O-C <u>H</u> ₃)	ŕ	` ´		
2	5	4,17т (2H, N ⁷ -С <u>Н</u> ₂ -); 2,02м (2H, -С <u>Н</u> ₂ -СН ₂ -); 2,59т (2H, -	3,38;	3,23кв	1,33т (3H, -CH ₂ -С <u><i>H</i></u> ₃)	
		СН ₂ -С <u><i>H</i></u> ₂ -); 7,23д (2H, С <u><i>H</i></u> -аром.); 7,16м (3H, С <u><i>H</i></u> -аром.)	3,19	(2H)		
3	6	4,97д (2H, N ⁷ -С <u>Н</u> ₂ -); 6,35м (1H, -СН ₂ -С <u>Н</u> =); 6,42д (1H, -	3,40розщ;	3,25кв	1,33т (3H, -CH ₂ -С <u><i>Н</i></u> 3)	
		СН=С <u>Н</u> -); 7,37д (2H, С <u>Н</u> -аром.); 7,26м (3H, С <u>Н</u> -аром.)	3,20розщ	(2H)		
4	7	4,30т (2H, N ⁷ -С <u><i>H</i></u> ₂ -); 2,90т (2H, -С <u><i>H</i>₂-</u> С ₆ H ₄); 7,08д (2H,	3,45;	3,79м	5,85м (1H, -С <u>Н</u> =СH ₂);	
		С <u>Н</u> -аром.); 6,75д (2H, С <u>Н</u> -аром.); 3,73с (3H, -O-С <u>Н</u> ₃)	3,27	(2H)	5,20дд (2H, -CH=C <u><i>H</i></u> ₂)	
5	8	$4,55$ т (2H, N^7 -С \underline{H}_2 -); 2,93т (2H, -С \underline{H}_2 -С ₆ H ₄); 7,1д (2H, С \underline{H} -	3,35;	3,15т	1,55м (2H, S-CH ₂ -C <u>H</u> ₂ -);	
		аром.); 6,75д (2H, С <u>Н</u> -аром.); 3,74с (3H, -O-С <u>Н</u> ₃)	3,18	(2H)	1,18т (3H, -CH ₂ -C <u>H</u> ₃)	
6	9	4,22т (2H, N ⁷ -С <u>Н</u> ₂ -); 2,06м (2H, -С <u>Н</u> ₂ -СН ₂ -); 2,61т (2H, -	3,39;	3,22т	1,71м (2H, S-CH ₂ -C <u>H</u> ₂ -);	
		СН ₂ -С <u><i>H</i>2</u> -); 7,24д (2H, С <u><i>H</i></u> -аром.); 7,16м (3H, С <u><i>H</i></u> -аром.)	3,18	(2H)	0,98т (3H, -CH ₂ -C <u><i>H</i></u> 3)	
7	10	4,96д (2H, N ⁷ -С <u>Н</u> ₂ -); 6,34м (1H, -СН ₂ -С <u>Н</u> =); 6,44д (1H, -	3,39;	3,22т	1,69кв (2H, -CH ₂ -C <u><i>H</i>2</u> -);	
		СН=С <u>Н</u> -); 7,37д (2H, С <u>Н</u> -аром.); 7,26м (3H, С <u>Н</u> -аром.)	3,18	(2H)	0,94т (3H, -CH ₂ -С <u><i>Н</i></u> ₃)	
8	11	4,27т (2H, N ⁷ -С <u>Н</u> ₂ -); 2,92т (2H, -С <u>Н</u> ₂ -С ₆ H ₄); 7,01д (2H,	3,39;	3,10т	1,54квінт (2H, S-CH ₂ -C <u>H</u> ₂);	
		$C^{2}\underline{H}$, $C^{6}\underline{H}$ -аром.); 6,81д (2H, $C^{3}\underline{H}$, $C^{5}\underline{H}$ -аром.); 3,69с (3H, -	3,22	(2H)	1,3секст, (2H, -С <u><i>H</i></u> ₂ -СH ₃);	
		O-C <u>H</u> ₃)			0,85т (3H, -CH ₂ -С <u>Н</u> ₃)	
9	12	4,18т (2H, N ⁷ -С <u><i>H</i>₂</u> -); 2,03м (2H, -С <u><i>H</i>₂</u> -СH ₂ -); 2,59т (2H, -	3,37;	3,24т	1,66м (2H, S-CH ₂ -C <u>H</u> ₂ -);	
		СН ₂ -С <u><i>H</i>2</u> -); 7,23т (2H, С <u><i>H</i></u> -аром.); 7,15м (3H, С <u><i>H</i></u> -аром.)	3,19	(2H)	1,39м (2H, -С <u><i>H</i></u> 2-СН ₃);	
					0,88т (3H, -CH ₂ -C <u><i>H</i></u> ₃)	
10	13	4,99д (2H, N ⁷ -С <u><i>H</i>₂</u> -); 6,34м (1H, -CH ₂ -С <u><i>H</i></u> =); 6,43д (1H, -	3,42розщ;	3,26т	1,65м (2H, -CH ₂ -C <u>H</u> ₂ -);	
		СН=С <u>Н</u> -); 7,38д (2H, С <u>Н</u> -аром.); 7,26м (3H, С <u>Н</u> -аром.)	3,21розщ	(2H)	1,37кв (2H, -C <u><i>H</i></u> 2-CH ₃);	
					0,86т (3H, -CH ₂ -С <u><i>Н</i></u> 3)	
11	14	4,29т (2H, -N ⁷ -С <u>Н</u> ₂ -); 2,93т (2H, -С <u>Н</u> ₂ -С ₆ H ₄); 7,01д (2H,		3,01д	1,81квінт (1H, -CH ₂ -C <u>H</u>);	
		$C^{2}\underline{H}$, $C^{6}\underline{H}$ -аром.); 6,81д (2H, $C^{3}\underline{H}$, $C^{5}\underline{H}$ -аром.); 3,69с (3H, -	3,22	(2H)	0,90д (6H, -CH(C <u>H</u> ₃) ₂)	
		O-C <u>H</u> ₃)				

Продовження табл. 1

1	2	3	4	5	6
12	15	4,17т (2H, N ⁷ -С <u><i>H</i>₂-</u>); 2,02м (2H, -С <u><i>H</i>₂-СH₂-); 2,59т (2H, -</u>	3,36;	3,16д	1,93м (1H, -CH ₂ -C <u><i>H</i></u>);
		СН ₂ -С <u><i>H</i></u> ₂ -); 7,23т (2H, С <u><i>H</i></u> -аром.); 7,14м (3H, С <u><i>H</i></u> -аром.)	3,18	(2H)	0,96д (6H, -CH(C <u>H</u> ₃) ₂)
13	16	4,98д (2H, N ⁷ -С <u>Н</u> ₂ -); 6,34м (1H, -СH ₂ -С <u>Н</u> =); 6,44д (1H, -	3,40;	3,31c/	1,94квінт (1H, -CH ₂ -C <u>H</u>);
		СН=С <u>Н</u> -); 7,38д (2H, С <u>Н</u> -аром.); 7,26м (3H, С <u>Н</u> -аром.)	3,20	3,17c	0,96д (6H, -CH(C <u>H</u> ₃) ₂)
				(2H)	
14	17	4,28т (2H, N ⁷ -С <u>H</u> ₂ -); 2,92т (2H, -С <u>H</u> ₂ -С ₆ H ₄); 7,08д (2H,		3,15т	1,67квінт (2H, -CH ₂ -C <u>H</u> ₂ -);
		C^{2} <u>H</u> , C^{6} <u>H</u> -аром.); 6,77д (2H, C^{3} <u>H</u> , C^{5} <u>H</u> -аром.); 3,73с (3H, -	3,31	(2H)	1,36м (4H, -CH ₂ -CH ₂ -С <u>Н</u> ₂ -
		O-C <u>H</u> ₃)			С <u><i>H</i></u> ₂ -); 0,92т (3H, -CH ₂ -С <u><i>H</i></u> ₃)
15	18	4,18т (2H, N ⁷ -С <u><i>H</i>2</u> -); 2,02м (2H, -С <u><i>H</i>2</u> -СH ₂ -); 2,59т (2H, -	3,38;	3,23т	1,67квінт (2H, -CH ₂ -C <u>H</u> ₂ -);
		СН ₂ -С <u>Н</u> ₂ -); 7,23т (2H, С <u>Н</u> -аром.); 7,16м (3H, С <u>Н</u> -аром.)	3,30	(2H)	1,31м (4H, -CH ₂ -CH ₂ -С <u>Н</u> ₂ -
					С <u>Н</u> ₂ -); 0,85т (3H, -CH ₂ -С <u>Н</u> ₃)
16	19	4,99д (2H, N ⁷ -С <u>Н</u> ₂ -); 6,35т (1H, -CH ₂ -С <u>Н</u> =); 6,44д (1H, -	3,42;	3,25т	1,67м (2H, -CH ₂ -C <u>H</u> ₂ -);
		СН=С <u><i>H</i></u> -); 7,40д (2H, С <u><i>H</i></u> -аром.); 7,29м (3H, С <u><i>H</i></u> -аром.)	3,21	(2H)	1,31т (2H, -С <u><i>Н</i></u> 2-СН ₂ -СН ₃);
					1,27т (2H, -CH ₂ -С <u>Н</u> ₂ -СН ₃);
					0,81т (3H, -CH ₂ -C <u>H</u> ₃)
17	20	4,27т (2H, N ⁷ -С <u><i>H</i>2</u> -); 2,91т (2H, -С <u><i>H</i>2</u> -С ₆ H ₄) 7,00д (2H,		3,10т	1,58квінт (1H, -CH ₂ -C <u>H</u>);
		$C^{2}\underline{H}$, $C^{6}\underline{H}$ -аром.); 6,81д (2H, $C^{3}\underline{H}$, $C^{5}\underline{H}$ -аром.); 3,69с (3H, -	3,22	(2H)	1,44кв (2H, -CH ₂ -C <u>H</u> ₂ -);
		O-C <u>H</u> ₃)			0,85д (6H, -CH(C <u>H</u> ₃) ₂)
18	21	4,17т (2H, N ⁷ -С <u><i>H</i>2</u> -); 2,02квінт (2H, -С <u><i>H</i>2</u> -СH ₂ -); 2,59т		3,24т	1,66м (1H, -CH ₂ -C <u>H</u>);
		(2H, -CH ₂ -C <u>H</u> ₂ -); 7,23т (2H, С <u>Н</u> -аром.); 7,15м (3H, С <u>Н</u> -	3,31	(2H)	1,56кв (2H, -CH ₂ -C <u>H</u> ₂ -);
		аром.)			0,89д (6H, -CH(C <u>H</u> ₃) ₂)
19	22	4,97д (2H, N ⁷ -С <u><i>H</i></u> ₂ -); 6,34т (1H, -CH ₂ -С <u><i>H</i></u> =); 6,43д (1H, -	3,40;	3,26т	1,65м (1H, -CH ₂ -C <u><i>H</i></u>);
		СН=С <u>Н</u> -); 7,38т (2H, С <u>Н</u> -аром.); 7,26м (3H, С <u>Н</u> -аром.)	3,20	(2H)	1,56м (2H, -CH ₂ -C <u><i>H</i></u> ₂ -);
		7			0,86д (6H, -CH(C <u>H</u> ₃) ₂)
20	23	4,27т (2H, N ⁷ -С <u>Н</u> ₂ -); 2,91т (2H, -С <u>Н</u> ₂ -С ₆ H ₄); 7,01д (2H,		3,08т	1,55квінт (2H, -CH ₂ -C <u>H</u> ₂ -);
		$C^{2}\underline{H}$, $C^{6}\underline{H}$ -аром.); 6,80д (2H, $C^{3}\underline{H}$, $C^{5}\underline{H}$ -аром.); 3,69с (3H, -	3,22	(2H)	1,30кв (2H, -CH ₂ -CH ₂ -C <u>H</u> ₂ -);
		O-C <u>H</u> ₃)			1,23м (4H, -С <u><i>H</i></u> ₂ -С <u><i>H</i>₂-СH₃);</u>
					0,83т (3H, -CH ₂ -CH ₂ -С <u>Н</u> ₃)

Література

- 1. Коржов В. И. Роль системы глутатиона в процессах детоксикации и антиоксидантной защиты (обзор литературы) / В. И. Коржов, В. Н. Жадан, М. В. Коржов // Журнал академії медичних наук. 2007. Т 13. № 1. С. 3–19. 2. Соколовский В. В. Тиолдисульфидное соотношение крови как показатель состояния неспецифической резистентности организма / В. В. Соколовский. СПб.: МАПО, 1996. 33 с.
- 3. Ясінський Р. М. Дослідження активності каталази та стану деяких складових тіол-дисульфідної системи при ВІЛ/СНІД асоційованому туберкульозі / Р. М. Ясінський // Запорізький медичний журнал. 2011. Т 13. № 4. С. 150–152.
- 4. Синтез і фізико-хімічні властивості деяких 7-аралкіл-(алкеніл)-8-бромо-(тіо-)теофілінів. : матеріали XXVIII всеукр. науково-практ. конф. з міжн. участю «Ліки –
- людині», м. Харків, 2011 / Д. Б. Коробко, О. В. Березовський, М. М. Палагнюк, Є. С. Пилипів. С. 263-269. 5. Шкода О. С. Синтез, фізико-хімічні та біологічні властивості 7-(β-гідрокси-γ-арилокси)-пропілксантинів: автореф. дис. ... канд. фармац. наук: спец. 15.00.02 «Фармацевтична хімія та фармакогнозія» / О. С. Шкода. – Запоріжжя, 2009. – 20 с.
- 6. Антипенко Л. М. Синтез, фізико-хімічні та біологічні властивості S-похідних 2-тіо-[1,2,4]триазоло-[1,5-с]хіназоліну: автореф. дис. канд. фармац. наук: спец. 15.00.02 «Фармацевтична хімія та фармакогнозія» / Л. М. Антипенко. Запоріжжя, 2010. 23 с.
- 7. Silverstein Robert M. Spectrometric identification of organic compounds / Robert M. Silverstein, Francis X. Webster, David J. Kiemle. John Wiley & Sons Ltd, USA. 7 ed., 2005. 267 p.

Synthesis of biologically active compounds

СИНТЕЗ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА РЯДА 7-АРИЛАЛКИЛ-8-ТИОЗАМЕЩЕННЫХ 1,3-ДИМЕТИЛКСАНТИНА

Д. Б. Коробко

Тернопольский государственный медицинский университет имени И. Я. Горбачевского

Резюме: разработаны препаративные методы синтеза ряда неописанных в литературе 7-арилалкил-8-тиоалкилтеофиллинов как потенциальных биологически активных веществ. Обсуждены их спектральные характеристики.

Ключевые слова: синтез, 1,3-диметилксантин, алкилирование, 7-арилалкил-8-тиоалкилтеофиллины.

SYNTHESIS AND PHYSICO-CHEMICAL PROPERTIES OF SOME 7-ARYLALKYL-8-THIOSUBSTITUTED 1.3-DIMETHYLXANTHINE

D. B. Korobko

Ternopil State Medical University by I. Ya. Horbachevsky

Summary: developed a preparative methods of synthesis of some not described in the literature 7-arylalkyl-8-thioalkylteophyllines as potential biologically active substances. Their spectral descriptions were discussed.

Key words: synthesis, 1.3-dimethylxanthine, alkylation, 7-arylalkyl-8-thioalkylteophyllines.

Отримано 19.03.14