TERMOGRAVIMETRIC RESEARCHES FOR N,N'-DIBENZILAMID OF LITTLENEW ACID (DIBAMC) SUPPOSITORIES

T. V. Trunova, T. V. Krutskykh, O. S. Kukhtenko

National University of Pharmacy, Kharkiv

Summary: termogravimetric properties of components of suppositories were investigational for treatment of epileptic diseases. The results of researches showed the possibility of conduct of technological process of production of suppositories in standard temperature terms (to 70 °C). Accordance of characteristic thermal effects of every matter of preparation proves the thermal effect of mixture, those components of preparation are irresponsible between themselves.

Key words: suppositories manufacturing, derivatogramme, termogravimetric researches, technological process.

Рекомендовано д-р фармац. наук, проф. П. Д. Пашневим

ДОСЛІДЖЕННЯ З ВИБОРУ ДОПОМІЖНИХ РЕЧОВИНИ З МЕТОЮ ОТРИМАННЯ ТАБЛЕТОК ЦИНКУ АСПАРАГІНАТУ

© В. М. Коваль, Т. А. Грошовий

Вінницький національний медичний університет імені М. І. Пирогова
Тернопільський державний медичний університет імені І. Я. Горбачевського

Резюме: вивчено вплив п'яти груп допоміжних речовин на основні показники порошкових мас і таблеток-ядер з цинком аспарагінатом, отриманих методом прямого пресування.

Ключові слова: таблетки, мікроелементи, цинк аспарагінат, допоміжні речовини.

Вступ. Мікроелементи відіграють надзвичайно важливу роль для підтримання життєдіяльності організму. ВООСЗ відділили 3 мікроелементи, що мають глобальне значення для людини – йод, цинк та залишок. Це пов'язано з тим, що вони відіграють важливу роль в морфофункціональному розвитку основних систем організму, а дефіцит цих елементів має найбільші наслідки для здоров'я людини [3,7]. Здатність цинку брати участь у процесах ліган-доутворення з органічними молекулами пояс-
нює надзвичайно широкий спектр його участі у різних біологічних системах. Цикл є структурним компонентом біологічних мембран, клітинних рецепторів, протеїнів, входить до складу понад 300 ензиматичних систем, що регулюють основні процеси обміну речовин [5,10].

Адекватне надходження циклу є дуже важливим для дітей першого року життя, оскільки він впливає на встановлення та функціонування імунної системи, шлунково-кишкового тракту (реєгує всмоктування води і електролітів), антиоксидантного захисту. Дефіцит даного мікроелемента в антенатальний період призводить до формування вад розвитку плода, або затримки його росту [1]. Було відмічено позитивні відмінності в стані імунореактивності та зменшення проявів психічної нестабільності у дітей – насаджених ліківаторів на ЧАЕС, які досягли до стандартного курсу терапії приймали препарат циклу сульфату, на відміну від контрольної групи, якій був призначений лише стандартний курс терапії [9]. Також були проведено дослідження із вивчення ефективності застосування сульфату циклу в комплексній терапії у дітей шкільного віку, що підтвердили ефективність застосування препаратів у комплексній терапії при даному захворюванні [6].

Результати численних досліджень дії циклу підтвердили, що саме цикл має найбільш специфічний та найвагоміший вплив на стан імунної системи [8]. Основним джерелом поповнення циклу при його дефіциті є мінеральні добавки, що входять до складу різних лікарських засобів [9]. У медицинні практиці використовують різні сполуки циклу (циклу сульфат, циклу оксид, циклу аспарагінат, циклу пропіонат, циклу ваперінат, циклу бромід, циклу пірітіонат та ін.). Ведуться дослідження зі створення лікарських препаратів на основі циклу аспарагінату. Серед таблетованих монопрепаратів солей циклу для перорального застосування на сьогодні на українському ринку зареєстрований цикнетар. У більшості випадків цикл входить до складу імпортних комплексних препаратів, що містять мікроелементи та вітаміни. Тому є доцільним створення вітчизняних лікарських препаратів, що містять солі циклу.

Метою дослідження було вивчення різних груп допоміжних речовин для створення таблеток циклу аспарагінату методом прямого пресування.

Методи дослідження. При вивченні фізичних та технологічних властивостей циклу аспарагінату встановлено, що порошок має сипучість, називну масу, кут природного відкосу та такі показники, які дозволяють при використанні раціональних допоміжних речовин отримати таблетки прямим пресуванням. Для надання порошкової маси з циклом аспарагінатом необхідних для прямого пресування властивостей – сипучості і пресованості вивчали 25 допоміжних речовин, які були умовно розділені на п’ять груп. При віднесені речовин до тієї чи іншої групи враховували їхні технологічні властивості, або належність до певного класу хімічних сполук. Перелік допоміжних речовин наведено в таблиці 1.

<table>
<thead>
<tr>
<th>Фактори</th>
<th>Рівні факторів</th>
</tr>
</thead>
</table>
| A – структуроутворюючі речовини на основі мікрокристалічної цепелози (МКЦ) | a1– МКЦ 102
a2– МКЦ 12
a3– МКЦ 112
a4– МКЦ 301
a5– МКЦ 250 |
| B – структуроутворюючі речовини на основі цукрів | b1– лудіпрес
b2– таблетоза 80
b3– манітол
b4– лактоза
b5– фарматоза 11 |
| C – розпушувачі | c1– крохмаль картопляний
c2– кросповідн ХЛ 10
c3– натрій кроскармелоза
c4– натрій крохмаль гліколят
c5– натрій карбоксиметил крохмаль |
| D – ковзки | d1– тальк
d2– вітacleль 290
d3– аеросил
d4– арбосель 300
d5– гідроксипропилметил-целюлоза (ГПМЦ 606) |

Таблиця 1. Допоміжні речовини, які вивчали в процесі розробки технології таблеток циклу аспарагінату прямим пресуванням

Pharmaceutical review 4’2010
39
Фармацевтична технологія, біофармація, гомеопатія
Pharmaceutical technology, biopharmacy, homeopathy

Продовження табл. 1

<table>
<thead>
<tr>
<th>Фактори</th>
<th>Рівні факторів</th>
</tr>
</thead>
<tbody>
<tr>
<td>E – змащуючі</td>
<td>e1 – кальцію стеарат</td>
</tr>
<tr>
<td>e2 – магнію стеарат</td>
<td></td>
</tr>
<tr>
<td>e3 – кислоти стеаринова</td>
<td></td>
</tr>
<tr>
<td>e4 – натрій стеарил фумарат</td>
<td></td>
</tr>
<tr>
<td>e5 – натрій лаурил сульфат</td>
<td></td>
</tr>
</tbody>
</table>

При складанні рецептур таблеткових сумішей вміст цинку аспарагінату в одній таблетці складав 0,05 г, ковзких речовин 0,006 г, змащуючих речовин 0,002 г і допоміжних речовин інших технологічних груп (фактори A, В і С) – до отримання таблеток середньою масою 0,2 г.

Вивчення 25-ти допоміжних речовин проводили за допомогою 5х5 гіпер-греко-латинського квадрату. Матріця планування експерименту та результати дослідження порошкових мас та таблеток цинку аспарагінату наведено в таблиці 2.

| Таблиця 2. Матріця планування експерименту та результати дослідження порошкових мас та таблеток цинку аспарагінату |
|----------------|----------------|
| Номер серії | A | B | C | D | E | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | D | D' |
| 1 | a1 | b1 | c1 | d1 | e1 | 0,50 | 0,47 | 0,67 | 0,66 | 3,0 | 3,0 | 2,41 | 2,78 | 132 | 127 |
| 2 | a2 | b1 | c1 | d1 | e1 | 0,43 | 0,42 | 0,57 | 0,55 | 3,0 | 3,0 | 1,31 | 2,21 | 196 | 184 |
| 3 | a3 | b1 | c1 | d1 | e1 | 0,43 | 0,42 | 0,60 | 0,57 | 2,0 | 2,0 | 4,34 | 4,11 | 118 | 109 |
| 4 | a4 | b1 | c1 | d1 | e1 | 0,48 | 0,45 | 0,67 | 0,66 | 3,0 | 2,5 | 1,25 | 1,87 | 181 | 174 |
| 5 | a5 | b1 | c1 | d1 | e1 | 0,50 | 0,48 | 0,65 | 0,66 | 4,0 | 3,8 | 6,68 | 5,02 | 149 | 144 |
| 6 | a6 | b1 | c1 | d1 | e1 | 0,42 | 0,41 | 0,56 | 0,55 | 3,0 | 2,9 | 2,68 | 3,34 | 172 | 168 |
| 7 | a7 | b1 | c1 | d1 | e1 | 0,52 | 0,50 | 0,67 | 0,65 | 4,0 | 4,1 | 0,83 | 1,39 | 180 | 174 |
| 8 | a8 | b1 | c1 | d1 | e1 | 0,56 | 0,54 | 0,67 | 0,65 | 4,0 | 3,9 | 1,14 | 1,65 | 117 | 112 |
| 9 | a9 | b1 | c1 | d1 | e1 | 0,55 | 0,53 | 0,71 | 0,68 | 4,0 | 4,0 | 3,14 | 3,43 | 136 | 128 |
| 10 | a10 | b1 | c1 | d1 | e1 | 0,53 | 0,51 | 0,67 | 0,66 | 4,0 | 3,9 | 1,43 | 1,68 | 199 | 185 |
| 11 | a11 | b1 | c1 | d1 | e1 | 0,50 | 0,49 | 0,67 | 0,65 | 1,7 | 1,8 | 2,25 | 2,53 | 97 | 91 |
| 12 | a12 | b1 | c1 | d1 | e1 | 0,46 | 0,44 | 0,67 | 0,66 | 1,7 | 1,8 | 5,25 | 4,87 | 123 | 117 |
| 13 | a13 | b1 | c1 | d1 | e1 | 0,48 | 0,47 | 0,67 | 0,66 | 2,0 | 2,0 | 5,38 | 4,89 | 99 | 91 |
| 14 | a14 | b1 | c1 | d1 | e1 | 0,43 | 0,42 | 0,57 | 0,56 | 1,2 | 1,4 | 2,77 | 2,88 | 213 | 198 |
| 15 | a15 | b1 | c1 | d1 | e1 | 0,44 | 0,43 | 0,60 | 0,67 | 1,3 | 1,4 | 1,24 | 1,56 | 130 | 126 |
| 16 | a16 | b1 | c1 | d1 | e1 | 0,56 | 0,55 | 0,73 | 0,70 | 4,0 | 4,1 | 5,59 | 5,45 | 203 | 194 |
| 17 | a17 | b1 | c1 | d1 | e1 | 0,46 | 0,44 | 0,63 | 0,61 | 4,0 | 4,1 | 5,50 | 5,12 | 139 | 127 |
| 18 | a18 | b1 | c1 | d1 | e1 | 0,59 | 0,56 | 0,75 | 0,74 | 4,0 | 4,0 | 2,31 | 2,43 | 158 | 146 |
| 19 | a19 | b1 | c1 | d1 | e1 | 0,47 | 0,43 | 0,63 | 0,62 | 3,0 | 3,1 | 1,13 | 1,87 | 178 | 168 |
| 20 | a20 | b1 | c1 | d1 | e1 | 0,57 | 0,55 | 0,75 | 0,73 | 6,0 | 5,7 | 3,03 | 3,34 | 168 | 157 |
| 21 | a21 | b1 | c1 | d1 | e1 | 0,52 | 0,51 | 0,65 | 0,63 | 4,8 | 4,5 | 0,81 | 1,43 | 222 | 204 |
| 22 | a22 | b1 | c1 | d1 | e1 | 0,56 | 0,54 | 0,71 | 0,69 | 4,0 | 3,8 | 1,59 | 1,76 | 154 | 146 |
| 23 | a23 | b1 | c1 | d1 | e1 | 0,48 | 0,46 | 0,63 | 0,61 | 4,0 | 4,0 | 2,72 | 2,69 | 131 | 128 |
| 24 | a24 | b1 | c1 | d1 | e1 | 0,52 | 0,59 | 0,71 | 0,70 | 4,0 | 3,9 | 2,76 | 2,98 | 138 | 132 |
| 25 | a25 | b1 | c1 | d1 | e1 | 0,46 | 0,44 | 0,63 | 0,62 | 3,0 | 2,9 | 1,34 | 1,66 | 137 | 128 |

Примітка: Y1 і Y2 – вільна насиченна маса першої і другої серії дослідів відповідно, г/см²; Y3 і Y4 – насиченна маса після ушліплення першої і другої серії дослідів відповідно, г/см²; Y5 і Y6 – пливинність першої і другої серії дослідів відповідно, г/с; Y7 і Y8 – однореєність маси таблеток першої і другої серій дослідів відповідно, %; Y9 і Y10 – стійкість таблеток до розпадання першої і другої серії дослідів відповідно, хв; D і D’ – функція бажаності для першої і другої серії дослідів відповідно.

Фармацевтичний часопис 4/2010
статичній незначущості факторів В і Е. Найбільше значення вільної насиленої порошкової маси з цинку аспаратом спостерігається при використанні мікрокристалічної цеолюзи зразків 301, 12 та 250, які мали перевагу перед традиційно використовуваний для отримання прямо-го пресування МКЦ 102. В групі розпушуючих речовин найбільші значення насиленої маси порошкових мас цинку аспарату були отримані при використанні крохмалю картопліного і натрій кроскармелоzu, а найменші при використанні кросповідного ХЛ 10. У групі змащувальнih речовин за впливом на насилену масу порошкових мас цинку аспарату інші значення було отримано при використанні ГПМЦ 606, вітачелю 290, дещо менше при використанні та льку і арбоцею 300.

Вплив зразків мікрокристалічної цеолюзи на ущільнення порошкових мас з цинком аспаратом ілюструє такий ряд переваг: МКЦ 301 (0,69 г/см³) > МКЦ 250 (0,66 г/см³) > МКЦ 12 (0,65 г/см³) > МКЦ 102 (0,63 г/см³) = МКЦ 112 (0,63 г/см³).

Дослідженні зразки розпушуючих речовин впливають на насилену масу після ущільнення порошкових мас з цинком аспаратом таким чином: крохмаль картоплінний (0,67 г/см³) = натрій кроскармелоzu (0,67 г/см³) = натрій крошма глюкозу (0,67 г/см³) > натрій картбоксиметил крохмаль (0,66 г/см³) > кросповідь ХЛ 10 (0,59 г/см³).

Значення насиленої маси після ущільнення при дослідженні ковзних речовин такі: тальк (0,68 г/см³) > вітчелю 290 (0,66 г/см³) = арбоцель 300 (0,66 г/см³) = ГПМЦ 606 (0,66 г/см³) > аеросил (0,59 г/см³).

Одержані порошкові маси також досліджувались на плинність. Результати дисперсійного аналізу експериментальних даних із визначення плинності показали статистичну значущість всіх п'яти факторів: A > D > C > B > E. Найкращі результати впливу порошкових мас на сопротивлення досліджувалися при використанні МКЦ 301, яка має невелику перевагу над МКЦ 250 та МКЦ 12, які мають, в свою чергу, перевагу над МКЦ 102. Найгірший результат був отриманий при використанні МКЦ 112. В групі ковзних речовин найбільше значення плинності отримали при використанні тальк, дещо гірші показники були отримані при використанні вітчелю 290, арбоцель 300 і ГПМЦ 606. Найгірший результат спостерігався при використанні аеросіл. Розпушуючі речовини за впливом на плинність порошкових мас з цинком аспаратом можна проранжувати таким чином: натрій картбоксиметил крохмаль > натрій кроскармелоzu > крохмаль картопляний > натрій крошма глюкозу > кросповідь ХЛ 10.

Фармацевтична технологія, біофармація, гомеопатія

Pharmaceutical technology, biopharmacy, homeopathy

Найбільший вплив на плинність з групи структуроутворюючих речовин на основі цукрів (фактор В) проявляє фарматоза 11, яка має перевагу над таблетою 80, ліпдіресом і лактозою.

З групи змащувальних речовин найбільше значення плинності забезпечує натрій стеарил фурамат. Йому дещо поступається натрій лаурил сульфат, який має перевагу над магнієм стеаратом, кальцієм стеаратом, кислотою стеариновою.

Результати дисперсійного аналізу експериментальних даних із однорідності маси таблеток показали, що на цей показник статистично впливають всі вивчені фактори: A > D > C > E > B.

Одним з показників, що характеризують якість процесу пресування, є однорідність маси таблеток, яка відображає однорідність заповнення матриці. Таблетки всіх серій дослідів відповідають вимогам ДФУ за даним показником і однорідність маси для них не перевищувала ±7,5%.

Вплив зразків МКЦ на однорідність маси таблеток ілюструє такий ряд переваг: a1 > a2 > a3 > a4. Найбільш позитивно впливають МКЦ марок 250 та 12, які мають перевагу над МКЦ 102, МКЦ 112, МКЦ 301.

Ранжуваний ряд для порошкоподібних добавок речовин на основі цукрів цеолюзи має такий вигляд: лактоза > ліпдірес > фарматоза 11 > діон таблетою 80. У групі розпушуючих речовин найкращу однорідність дозування забезпечували кросповідь ХЛ 10 та крохмаль картопляний, їм поступали натрій кроскармелоzu, натрій крошма глюкозу, натрій картбоксиметил крохмал. Серед ковзних речовин перевагу отримав арбоцель 300. З групи змащувальних речовин кращу однорідність маси таблеток забезпечував магній стеарат.

Таблетки випробовували на стійкість до роздавлювання відповідно до вимог ДФУ [2]. Результати дисперсійного аналізу експериментальних даних із визначення стійкості таблеток до роздавлювання показали статистичну значущість всіх факторів: B > E > D > C > A. Встановлено, що найбільшу стійкість таблеток цинку аспарату до роздавлювання отримували при використанні МКЦ 301, МКЦ 12 і МКЦ 250. З групи розпушуючих речовин кращі результати були отримані при використанні лактози і ліпдірес порівняно з таблетою 80, фарматозою 11 і діоном.

Ряд переваг для розпушуючих речовин має такий вигляд: крохмаль картопляний > кросповідь ХЛ 10 > натрій крошма глюкозу > натрій картбоксиметил крохмал > натрій кроскармелоzu. У групі ковзних речовин найбільшу стійкість таблеток до роздавлювання забезпечують арбоцель 300 і вітчел, яким дещо поступається
Фармацевтична технологія, біофармакія, домеопатія
Pharmaceutical technology, biopharmacy, homeopathy

аеросіл, який має перевагу над ГПМЦ 606 і тальком.

Серед змащувальних речовин на стійкість таблеток цинку аспарагінату до роздавлювання найбільший вплив проявляє натрій лаурилсульфат, йому поступаються кислота стеаринова, натрію стерил фумарат, магній стеарат і кальцій стеарат.

На стійкість таблеток цинку аспарагінату статистично значуще впливає лише фактор С. Оскільки таблетки цинку аспарагінату пресували при високому питому тискі й отримані таблетки мали високу стійкість до роздавлювання, їх стійкість була низькою і не перевищувала 0,06 % в жодній із серій.

При дослідженні таблеток цинку аспарагінату було встановлено, що на час розпадання таблеток цинку аспарагінату впливають всі фактори: С > Е > А > В > Д. Час розпадання таблеток цинку аспарагінату у серіях дослідів № 10 та 14 перевищував фармакопейні вимоги у два рази.

Ранжовий ряд переваг для порошкоподібних допоміжних речовин на основі МКЗ за впливом на розпадання має такий вигляд: МКЗ 102 > МКЗ 301 > МКЗ 250 > МКЗ 112 > МКЗ 12.

З групи розпушувальних речовин найбільший вплив на час розпадання мають манітол, таблетоза 80, лупірес, їм поступаються лактоза і фарматоза 11.

Найменший час розпадання таблеток цинку аспарагінату спостерігається при використанні з групи змащувальних речовин тальку. Йому поступаються арбіцел 500, ГПМЦ 606, аеросил і вітіцел.

Для вибору кращих поєднань допоміжних речовин використовували узагальнений показник – функцію бажаності [4]. Для цього перевіріні результати за показниками однорідності дозування таблеток, стійкості до роздавлювання, стійкості і розпадання переводили у безрозмірні величини. Проводили дисперсійний аналіз експериментальних даних.

Перше місце в ряду переваг за впливом на узагальнений показник якості таблеток цинку аспарагінату займають МКЗ 250, МКЗ 102 та МКЗ 12, котрим поступаються МКЗ 301 і МКЗ 112.

З групи структуротворюючих речовин на основі цукрів целюлози найбільший вплив на узагальнений показник якості таблеток цинку аспарагінату має лактоза, їй дещо поступається лупірес, що має перевагу над манітолом, фарматозою 11 і таблетою 80.

Найбільший вплив на узагальнений показник якості таблеток з групи зв’язуючих речовин має кросповідь ХЛ 10, якому поступається натрій кроскармелоза, що переважає над натрій крокмаль глюколят, кроккалент картопляним і натрій карбоксиметил крокмалем.

Серед змащувальних речовин, перше місце в ряду переваг за впливом на узагальнений показник якості таблеток цинку аспарагінату займає арбіцел 300, який має суттєву перевагу над тальком, якому поступаються ГПМЦ 606, аеросил і вітіцел.

У групі козових речовин найбільше значення узагальненного показника якості таблеток цинку аспарагінату спостерігається при використанні магнію стеарату, якому дещо поступається кальцій стеарат і натрій лауріл сульфат.

З врахуванням основних показників якості таблеток цинку аспарагінату та інформації про те, які допоміжні речовини дозволені в Україні для використання при створенні лікарських препаратів для подальших досліджень, були відібрани МКЗ 102, лактоза, кросповідь ХЛ 10, тальк і магній стеарат.

Висновки. 1. Вивчено технологічні властивості таблеткових мас з цинком аспарагінатом.
2. Досліджено вплив п’яти груп допоміжних речовин на основні показники таблеток цинку аспарагінату.
3. Із використанням комплексного показника якості таблеток – функції бажаності відібрано п’ять допоміжних речовин для подальших досліджень.

Література
6. Пикуза О. И. Эффективность применения сульфата цинка в комплексной терапии у детей школьного возраста / О. И. Пикуза, Т. Б. Мороз, А. М. Закирова //
ИССЛЕДОВАНИЯ С ВЫБОРА ВСПОМОГАТЕЛЬНЫХ ВЕЩЕСТВ С ЦЕЛЬЮ ПОЛУЧЕНИЯ ТАБЛЕТОК ЦИНКА АСПАРАГИНАТА

В. Н. Коваль, Т. А. Грошовый

Винницкий национальный медицинский университет имени Н. И. Пирогова
Тернопольский государственный медицинский университет имени И. Я. Горбачевского

Резюме: исследовано влияние пяти групп вспомогательных веществ на главные показатели таблеточных масс и таблеток-ядер с цинком аспарагинатом, полученных методом прямого прессования.

Ключевые слова: таблетки, микроэлементы, цинк аспарагинат, вспомогательные вещества.

STUDY ON EXCIPIENTS CHOICE WITH THE PURPOSE TO OBTAIN ZINC ASPARTATE TABLETS

V. M. Koval, T. A. Hroshovyi

Vinnytsia National Medical University by M. I. Pyrohov
Ternopil State Medical University by I. Ya. Horbachevsky

Summary: the influence of five groups of excipients on the main indicators of tablet mass and tablet-cores with zinc aspartate, obtained by direct compression, was researched.

Key words: tablets, micronutrients, zinc aspartate, excipients.