Розробка та валидация методики кількісного визначення сенозидів у краплях складних «Пікосен»

© В. К. Яковенко, В. А. Георгіянц, І. А. Вишневський
Національний фармацевтичний університет, Харків

Ключові слова: кількісний аналіз, спектрофотометрія, сенозиди, валидационні характеристики.

Вступ. В асортименті лікарських засобів для лікування запорів значне місце посідають препарати рослинного походження. Листя сені, кора кущів, коріння ревно містять похідні антрацену, а саме похідні емондін, які посілюють перистальтику товстої кишки і мають пронозує дію. У свіжозібраній сировині зазвичай містяться відновлені форми антраклізозів, у висушений – окиснені, часті в рослинні сировині присутні обидві форми. Антраценопохідні містять групи С=O, –OH, С=С, а також хінолін цикл, що обумовлює їх слабку кислотність, здатність вступати в реакції комплексоутворення, приєднування, окиснення, відновлення, люминесценції та поглинання при різних довжинах хвиль. Ці властивості покладено в основу більшості методів аналізу. Для виявлення антрахінів у рослинній сировині відповідно до ДФ СРСР XI видання та ДФУ використовують реакцію з лугом або сульфілатом, хроматографію в тонкому шарі сорбента. Застосування хроматографічних методів для якісної і кількісної характеристики зумовлене різною розчинністю і полярністю аглютинів та їх глюкозидів у безводних органічних розчинниках. Більшість методів кількісного визначення антраценопохідних базуються на проведенні попереднього гідролізу антраклізозів та визначені суми вільних оксіантрахінів [2, 3, 5, 8].

Розроблено складні краплі пронозою дії на основі синтетичної субстанції та рослинного екстракту. 1 мл препарату «Пікосен» містить кріпкісну пікоксультатуру 7,5 мг, сени листя екстракту сухого 10 мг, як допоміжні речовини – сорбіт, натрій метилпрабарідросфеноз та воду очищену.

Мета роботи - розробка методики кількісного визначення гідроксіантраценових глікозидів у краплях складних «Пікосен» та її валідация.

Методи дослідження. Об’єкти досліджень – складні оральні краплі «Пікосен», які містять гідроксіантраценові глікозиди сені.

Визначення гідроксіантраценових глікозидів проводять методом аборсбційної спектрофотометрії у ультрафіолетовій і видимій ділянках (ДФУ 2.2.25*) [3]. Вимірювання проводили на спектрофотометрі Varian Cary 50, реактиви які використовували, мають клас чистоти “фармацевтичний” або “чистий для аналізу”.

Проведення пробоподготовки. Випробуваний розчин (а): 10 мл препарату поміщають в мірну колбу місткістю 100 мл, додають близько 80 мл води Р, перемішують і доводять водою Р до мітки. 10 мл отриманого розчину поміщають у круглогонку колбу зі шліфом на 100 мл, додають 20 мл розчину заліза (ІІІ) хлориду Р1 і перемішують. Колбу з вмістом нагрівають протягом 20 хв зі зворотним холодильником на киплячій водяній бані з рівним води, вищим від рівня рідини в колбі, додають 10 мл кислоти хлористоводневої Р і знову нагрівають протягом наступних 20 хв. Вміст колби охолоджують, кількісно за допомогою 25 мл ефіру Р2 переносяться у дільницю лійку і збільшують протягом 5 хв. Ефірний шар відокремлюють і поміщають в іншу дільницю лійку. Екстрагували ефіром Р ще 2 рази в нижніх умовах. Ефірні екстракти об’єднують у дільницій лійці і промивають двома порціями води Р, по 15 мл кожна. Ефірний шар кількісно переносять у мірну колбу місткістю 100 мл, фільтруючи через паперовий фільтр із 3,0 г натрію сульфату безводного Р, доводять об’єм отриманого розчину ефіром Р до мітки.

Випробуваний розчин (б): 10 мл випробуваного розчину (а) поміщають у коначну колбу місткістю 50 мл, випаровують насухо, залишок розчиняють у 10 мл розчину 5 г/л магнію ацетату.

93
Аналіз лікарських препаратів

Analysis of drugs

П у метанолі Р при нагріванні на водяній бані з температурою 30 °С протягом 5 хв. Вимірювали оптичну густину випробуваного розчину (b) і холостого розчину (розчин 5 г/л магнію ацетату Р в метанолі Р) на спектрофотометрі за довжини хвилі 515 нм, використовуючи як компенсаційний розчин метанол Р. Спектри поглинання, одержані при кількісному визначені гідроксіантраценових глюкозидів у препараті «Лікросен», наведено на рисунку 1.

Вміст гідроксіантраценових глюкозидів (X_2), у 1 мл препарату, в міліграмах, розраховували за формулою:

$$X_2 = \frac{(A - A_b) \times 100 \times 100 \times 1000}{240 \times 100 \times 10} = \frac{(A - A_b) \times 1000}{240},$$

де A – оптична густина випробуваного розчину (b);
A_b – оптична густина холостого розчину;

240 – питомий показник поглинання сенозиду В за довжині хвилі 515 нм.

Вміст гідроксіантраценових глюкозидів, у перерахунку на сенозид В, у 1 мл препарату має бути від 0,65 мг до 0,85 мг.

Результати й обговорення. Прогноз невизначеності пробопідготовки і спектрофотометричного вимірювання розраховувався відносно загальні вимог ДФУ до лабораторного обладнання. Відносну невизначеність методики розраховували з огляду на невизначеність встановленого питомого показника поглинання і невизначеності пробопідготовки. При розрахунку невизначеності питомого показника поглинання використовували паспортну (0,15 %), а не максимально допустиму похибку вимірювань спектрофотометра, оскільки встановлення питомого показника поглинання не передбачали в інших аналітичних лабораторіях.

Спеціфічність. Дослідження специфічності проводиться при валідації випробувань на ідентифікацію, контроль домішок і кількісне визначення. Спосіб підтвердження специфічності залежить від завдань, для розв'язання яких призначене аналітичну методику. При досліджені на специфічність аналітичний метод повинен забезпечувати ідентифікацію лікарської речовини в присутності інших сполук подібних за хімічною структурою [4, 6].

Спеціфічність методу кількісного визначення гідроксіантраценових глюкозидів у препараті
«Пікосен» доводили шляхом порівняння спектрів досліджуваного розчину і розчину стан-
dартного зразка сенозиду В, приготованих за
описаною вище методикою. Отримані спектри
мають максимум поглинання за довжини хвилі
515 нм.

Поглинання холостого розчину (Abs = 0,00212)
складає 1,12 % від оптичної густини препарату
при номінальному вмісті діючої речовини. Отрім
мани результати свідчать, що використовувана
методика відповідає вимогам ДФУ, яка допуск
ае відхилення не більше 10 % від ширини ви-
mірюваного діапазону, в експерименті цей по-
казник не перевищив 2,6 % [3].

Правильність та прецізійність. Пра-
вильність характеризує ступінь відповідності між
відомим справжнім значенням або довідково
ю величиною і значенням, одержаним за даною
методикою. Показником правильності методу
вважається значення систематичної похиби. У
клініківського визначення речовини в лікарській
формі правильність аналітичної мето-
dики встановлюється за результатами її за-
tосування до аналізу модельної суміші, яка
включає всі компоненти лікарської форми, і відома
кількість речовини, що визначається. Пре-
цізійність аналітичної методики виражає ступінь
наближення (або ступінь розходу) результатів
для серії вимірів, виконаних за даною методи-
кою на різних пробах одного і того самого од
норідного зразка [1, 6].

Для перевірки правильності методики приго-
tовано 3 окремі суміші з точно відомим вмістом
сенозиду В, які охоплювали діапазон застосу
вання методики (з концентраціями 80, 100, 120
від номінальної). Для кожної моделюваної суміші
проведено 3 паралельні аналізи. Відповідно до
ДФУ розраховано такі критерії: систематична poхиба δ % (для правильності) і відносний до
відчынний інтервал Δ (для прецізійності) [3]:

\[s_z(\%) = \sqrt{\frac{\sum_{i=1}^{n}(Z_i - \overline{Z})^2}{n-1}} \] \hspace{1cm} (1)

\[\Delta_z = s_z(\%) \cdot t(95\%, n - 1) \leq \Delta_{As} \] \hspace{1cm} (2)

\[\delta = \frac{|Z - 100|}{\sqrt{n}} \leq 0.13 \] \hspace{1cm} (3)

де \(s_z \) – відносне стандартне відхилення, %
(розраховане для відношення «знайдено/введен
бо»);

\[n \] – обсяг вибірки;

\[\Delta_z \] – відносний довірчий інтервал;

\[\Delta_{As} \] – критичне значення для збіжності результ
татів;

\[t \] – однобічний критерій Стьюдента для імові
рності 95 % і числа ступенів свободи \(n = n - 1 \);

\[\delta \% \] – систематична похиба;

\[Z \] – знайдений вміст, у % до введеного;

\[\overline{Z} \] – середнє значення \(Z \).

Результати вимірювань та проведених розра
хунків наведено в таблиці 1.

Таблиця 1. Результати дослідження правильності та прецізійності методики кількісного визначення

<table>
<thead>
<tr>
<th>Вміст у моделійної суміші, у % до номінального</th>
<th>Оптична густина (A_i)</th>
<th>Знайдено вміст до номінального, %</th>
<th>Знайдено вміст до введеного, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0,127</td>
<td>79,78</td>
<td>99,72</td>
</tr>
<tr>
<td>80</td>
<td>0,129</td>
<td>80,89</td>
<td>101,11</td>
</tr>
<tr>
<td>80</td>
<td>0,125</td>
<td>78,67</td>
<td>98,33</td>
</tr>
<tr>
<td>100</td>
<td>0,165</td>
<td>100,89</td>
<td>100,89</td>
</tr>
<tr>
<td>100</td>
<td>0,161</td>
<td>98,67</td>
<td>98,67</td>
</tr>
<tr>
<td>100</td>
<td>0,163</td>
<td>99,78</td>
<td>99,78</td>
</tr>
<tr>
<td>120</td>
<td>0,201</td>
<td>120,89</td>
<td>100,74</td>
</tr>
<tr>
<td>120</td>
<td>0,198</td>
<td>119,22</td>
<td>99,35</td>
</tr>
<tr>
<td>120</td>
<td>0,200</td>
<td>120,33</td>
<td>100,28</td>
</tr>
</tbody>
</table>

Середнє значення \(Z \) 99,87

Відносне стандартне відхилення \(S_z % \) 0,98

Відносний довірчий інтервал \(\Delta_z \) 1,81

Критичне значення для збіжності результатів \(\Delta_{As} \) < 3,2

Систематична похиба \(\delta \% \) 0,13

Критерії невизначеності систематичної похиби < 0,60

Pharmaceutical review 4’2012
Аналіз лікарських препаратів
Analysis of drugs

Експериментальні результати прецізійності характеризуються припустимим розкиданням відносно середнього і відповідно низьким стандартичним відхиленням Sz % (Sz % = 0,98 < 3,2) на всьому діапазоні концентрацій (80-120 %).

Систематична похибка методики становить δ % = 0,13, що значно нижче встановленого критерію невизначеності та характеризує достатню близькість середнього результату до його номінального значення.

Лінійність встановлюють на основі результатів досліджень, які пропорційні концентрації речовини, що аналізуються, в зразку в межах аналітичної методики

$$A = k \cdot c + b.$$

Для підтвердження лінійності аналітичної методики використовують наступні параметри: коефіцієнт регресії, кут нахилу лінії регресії і залишкова сума площ. Аналітичну ділянку, в межах якої дотримується лінійна залежність, вибирали такою, щоб охоплювала інтервал ± 20 % відносно номінальної концентрації між вмісту речовини, що аналізується (включаючи ці межі), в інтервалі цих меж даний метод забезпечує кількісне визначення з прецізійностю і правильністю, які вимагаються. Поза межами цих ділянок відхилення від прецізійності і правильності не матиме вирішального впливу на оцінку якості препарату. Аналітичну ділянку виражали в таких одиницях, що і результати досліджень, отриманих за допомогою даної методики (%) [4, 6].

Для дослідження лінійності приготовлено 11 розведень препарату з концентраціями від 50 до 150 % від номінального вмісту гідроксимантраценглюкозиду у препараті. Розчини готували ваговим способом.

Методика розведення стандартного розчину. 17,5 mg сенозиду В розчиняли в 25 ml води R. До 10 ml розчину додавали 20 ml розчину зализу (III) хлориду р1, перемішували і одержували розчин (а). В окремі колби поміщали від 5 до 15 ml розчину (а) з кроком 1 ml, випаровували насухо і розчиняли у 10 ml розчину 5 г/л магнію ацетату R в метанолі R при нагріванні на водяної бані з температурою 30 °C протягом 5 хв. Вимірювали оптичну густину випробуваного розчину (б) і холодого розчину (розчин 5 г/л магнію ацетату R в метанолі R) на спектрофотометрі за довжини хвилі 515 нм, використовуючи як компенсаційний розчин метанол R. Одержані дані оптичної густини і результати їх обробки наведено в таблиці 3 і 4.

Таблиця 3. Результати вивчення лінійності моделюних розчинів сенозиду В

<table>
<thead>
<tr>
<th>Концентрація, мкг/мл</th>
<th>Оптична густина</th>
<th>Концентрація, %</th>
<th>Оптична густина, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,85</td>
<td>0,092</td>
<td>51,31</td>
<td>51,24</td>
</tr>
<tr>
<td>4,51</td>
<td>0,108</td>
<td>60,08</td>
<td>60,22</td>
</tr>
<tr>
<td>5,19</td>
<td>0,126</td>
<td>69,21</td>
<td>69,94</td>
</tr>
<tr>
<td>6,08</td>
<td>0,146</td>
<td>81,08</td>
<td>80,86</td>
</tr>
<tr>
<td>6,79</td>
<td>0,164</td>
<td>90,56</td>
<td>91,12</td>
</tr>
<tr>
<td>7,50</td>
<td>0,180</td>
<td>100,00</td>
<td>100,00</td>
</tr>
<tr>
<td>8,21</td>
<td>0,198</td>
<td>109,44</td>
<td>110,14</td>
</tr>
<tr>
<td>9,16</td>
<td>0,219</td>
<td>122,16</td>
<td>121,84</td>
</tr>
<tr>
<td>9,63</td>
<td>0,234</td>
<td>128,46</td>
<td>129,77</td>
</tr>
<tr>
<td>10,60</td>
<td>0,253</td>
<td>141,29</td>
<td>140,58</td>
</tr>
<tr>
<td>11,42</td>
<td>0,275</td>
<td>152,31</td>
<td>152,66</td>
</tr>
</tbody>
</table>

Таблиця 4. Параметри лінійності методики кількісного визначення сенозиду В

<table>
<thead>
<tr>
<th>Назва параметра</th>
<th>Результат</th>
<th>Критерій</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кутовий коефіцієнт лінійної залежності, b</td>
<td>0,99</td>
<td>–</td>
</tr>
<tr>
<td>Вільний член лінійної залежності, a</td>
<td>0,236</td>
<td>< 5,1</td>
</tr>
<tr>
<td>Коefficient корелляції, r</td>
<td>0,99985</td>
<td>> 0,99236</td>
</tr>
</tbody>
</table>

Графік лінійної регресії наведено на рисунку 2. Як видно з графіка (рис. 2), вимоги до параметрів лінійної залежності виконуються у всьому діапазоні застосування методики (50–150 %).

Розбіжність методики характеризує стійкість її до незначних змін умов експерименту. Для досліджуваного розчину ми перевірили його стійкість до зберігання, термін зберігання складав 2 го-

Фармацевтичний часопис 4’2012

96
Висновки. 1. Доведено можливість застосування спектрофотометричного методу для кількісного визначення гідроксіантраценових глюкозидів у складі препарату «Пікосен».
2. Валідаційними дослідженнями підтверджено специфічність, правильність, прецизійність, робочість та лінійність методики кількісного визначення гідроксіантраценових глюкозидів у препараті «Пікосен» в діапазоні 50–150 % від номінального вмісту.
3. Отримані результати використано при розробці методів контролю якості лікарського препарату «Пікосен», краплі оральні.

Література
Analysis of drugs

DEVELOPMENT AND VALIDATION OF THE METHOD OF QUANTITATIVE DETERMINATION OF SENNOSIDES IN THE COMPLEX DROPS «PICOSEN»

V. K. Iakovenko, V. A. Heorhiyants, I. A. Vyshnevskyi

National University of Pharmacy, Kharkiv

Summary: the method of quantitative determination of sennosides in the complex drug «Picosen», oral drops, was created by the absorptive spectrophotometry. The validation of created method was carried out and the basic validative parameters were determined, such as specificity, accuracy, precision, linearity and robustness. This method is characterized by sufficient sensitivity and simplicity of performing. Results of the research were used while method developing of quality control of «Picosen», oral drops.

Key words: quantitative analysis, spectrophotometry, sennosides, validation parameters.