БІОХІМІЯ РОСЛИН: МЕДИЧНІ ТА ФАРМАЦЕВТИЧНІ АСПЕКТИ

УДК 577.12:616.379-008.64:[599.323.45:591.111.1.088.6]:633.881

М. І. Лупак, О. П. Канюка, Г. Я. Гачкова, Я. П. Чайка, М. І. Скибіцька, Н. О. Сибірна ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

ВПЛИВ БЕЗАЛКАЛОЇДНОЇ ФРАКЦІЇ ЕКСТРАКТУ КОЗЛЯТНИКА ЛІКАРСЬКОГО НА СИСТЕМУ L-АРГІНІН/NO В ЛЕЙКОЦИТАХ ПЕРИФЕРИЧНОЇ КРОВІ ЩУРІВ ЗА ЕКСПЕРИМЕНТАЛЬНОГО ЦУКРОВОГО ДІАБЕТУ 1 ТИПУ

Досліджено вплив безалкалоїдної фракції екстракту козлятника лікарського на NO-синтазний шлях метаболізму L-аргініну в лейкоцитах периферичної крові щурів за умов експериментального цукрового діабету (ЕЦД) 1 типу. Введення його тваринам з ЕЦД чинить позитивний коригувальний вплив на організм, знижуючи надпродукцію оксиду азоту шляхом інгібування активності NO-синтази.

КЛЮЧОВІ СЛОВА: козлятник лікарський, цукровий діабет 1 типу, лейкоцити, L-аргінін, NOсинтаза.

ВСТУП. Цукровий діабет 1 типу є поліфакторним метаболічно-автоімунним захворюванням. Автоімунні процеси, які зумовлюють прогресуючу деструкцію β-клітин підшлункової залози, індукуються цитокінами та посилюються внутрішньоклітинними медіаторами, зокрема оксидом азоту (NO), супероксид-аніоном $(O_3 =)$, пероксидом водню (H_2O_3) . NO є унікальною сигнальною молекулою, яка виступає внутрішньоклітинним та позаклітинним месенджером, нейротрансмітером і регулятором внутрішньоклітинної секреції. В організмі людини і тварин NO утворюється двома основними шляхами: ензиматичним і неензиматичним. Ензиматичний синтез NO здійснюється з участю ензиму NO-синтази (NOS, 1.14.13.39), який за наявності молекулярного кисню та NADPH•H+ каталізує перетворення амінокислоти L-аргініну до NO і L-цитруліну [1].

При цукровому діабеті 1 типу внаслідок активації прозапальними цитокінами (ФНП- α , IЛ-1, IЛ-6 та ін.) у багатьох типах клітин, зокрема в лейкоцитах, відбуваються експресія гена індуцибельної NО-синтази та надмірне утворення NO. Кінцеві продукти метаболізму NO посилюють цитотоксичну дію лейкоцитів периферичної крові, пошкоджують ендотелій судин, порушують гемоциркуляцію та спричинюють тканинну дезорганізацію [1, 2].

У комплексному лікуванні цукрового діабету актуальним є використання препаратів рослин-

© М. І. Лупак, О. П. Канюка, Г. Я. Гачкова, Я. П. Чайка, М. І. Скибіцька, Н. О. Сибірна, 2014.

ного походження. Біологічна активність лікарських рослин визначається наявністю в їх складі сполук різноспрямованої дії, які проявляють широкий спектр біологічних ефектів. До лікарських рослин, які мають виражену цукрознижувальну дію та використовуються у клінічній діабетології, належить *Galega officinalis* L. (галега лікарська, козлятник лікарський).

Метою даної роботи було дослідити вплив безалкалоїдної фракції екстракту козлятника лікарського (БФЕКЛ) на NO-синтазний шлях обміну L-аргініну в лейкоцитах щурів з експериментальним цукровим діабетом (ЕЦД).

МЕТОДИ ДОСЛІДЖЕННЯ. Дослідження проводили на білих безпородних щурах-самцях масою 100-150 г. Тваринам забезпечували вільний доступ до їжі та води і перебування у стандартних умовах (12-годинна зміна світла і темряви). ЕЦД індукували внутрішньочеревним введенням стрептозотоцину ("Sigma", США) в дозі 5 мг на 100 г маси тіла. Тварин було поділено на 4 групи: 1-ша - контроль; 2-га - контроль+БФЕКЛ; 3-тя – ЕЦД; 4-та – ЕЦД+БФЕКЛ. Розвиток діабету контролювали за вмістом глюкози у крові, яку визначали через 72 год після введення стрептозотоцину глюкозооксидазним методом із застосуванням набору реактивів ("Філісіт-Діагностика", Україна). В експерименті використовували тварин із рівнем глюкози понад 14 мМ. Щурам 2-ї та 4-ї груп (на 3-й день з моменту індукції діабету) протягом 14 днів *per os* вводили БФЕКЛ.

Безалкалоїдну фракцію екстракту козлятника лікарського отримували згідно з протоколом, який описано раніше [5]. Через два тижні після індукції цукрового діабету щурам раз на добу *per os* вводили БФЕКЛ у вигляді водної суспензії, у дозі 0,6 г на 1 кг маси тіла тварини, в об'ємі 1 мл упродовж 14 діб.

Лейкоцити виділяли у градієнті густини фікол – тріомбраст (р = 1,076–1,078 г/см³) [6]. Вміст нітритів та нітратів визначали згідно з методикою [9], сумарну активність NO-синтази – спектрофотометричним методом за кольоровою реакцією з реактивом Грісса [7], концентрацію L-аргініну – за допомогою реакції Сакагучі [11], концентрацію білка – відповідно до загальноприйнятого методу Лоурі [10]. Статистичну обробку результатів проводили за допомогою t-критерію Стьюдента. Статистично значущими вважали дані при р<0,05.

РЕЗУЛЬТАТИ Й ОБГОВОРЕННЯ. У лейкоцитах щурів з ЕЦД відбувається активація окисного метаболізму L-аргініну. Зростання сумарної активності NO-синтази (в 1,6 раза) супроводжувалося збільшенням продукції оксиду азоту, про що свідчило підвищення вмісту стабільних метаболітів NO – нітрит-аніонів (у 1,6 раза) та нітрат-аніонів (у 3,83 раза) порівняно з контролем. Вміст нітрит-аніонів у плазмі крові значною мірою відображає активність NO-синтази ендотеліальних клітин, зокрема, 90 % всіх нітритів плазми є стабільними метаболітами оксиду азоту NO-синтазного походження [8]. За умов ЕЦД у лейкоцитах периферичної крові щурів зростає вміст L-аргініну (у 2,8 раза щодо контролю), що може бути зумовлено посиленим розпадом протеїнів в організмі як одним із проявів порушення метаболізму при інсуліновій недостатності за умов цукрового діабету [3].

У тварин контрольної групи в разі введення БФЕКЛ було виявлено вірогідне підвищення концентрації L-аргініну (в 1,3 раза) у лейкоцитах периферичної крові, а також незначне зростання сумарної активності NO-синтази та вмісту нітрит- і нітрат-аніонів.

При ЕЦД на фоні введення БФЕКЛ відмічено зниження концентрації L-аргініну в 1,5 раза та сумарної активності NO-синтази в 1,3 раза, а також сумарного вмісту стабільних метаболітів NO в 1,3 раза щодо контролю (табл.). Обмін L-аргініну в організмі може здійснюватися шляхом окисного перетворення з участю NOсинтази (до NO та L-цитруліну) і неокисного – з участю аргінази (до сечовини та орнітину). Зменшення вмісту L-аргініну в лейкоцитах щурів з ЕЦД на фоні зниження активності NOсинтази може бути наслідком порушення надходження його до клітини або активації аргінази. Співвідношення між NO-синтазним та аргіназним шляхами метаболізму L-аргініну підтримує у клітинах фізіологічний пул цієї амінокислоти і визначає інтенсивність продукування NO та його метаболітів.

Таблиця – Вплив БФЕКЛ на концентрацію L-аргініну, вміст стабільних метаболітів оксиду азоту та активність NO-синтази в лейкоцитах периферичної крові щурів у нормі та за умов ЕЦД (М±м, n=10-15)

Показник	Група			
	контроль	контроль+БФЕКЛ	ЕЦД	ЕЦД+БФЕКЛ
Аргінін, мкмоль/мг білка	10,01±0,87	13,19±0,56*	28,09±2,3**	17,75±1,9##
Сумарний вміст метаболітів NO, мкмоль/мг білка	18,21±3,83	25,14±3,66	68,67±5,53**	49,61±5,9
NO ²⁻ , мкмоль/мг білка	0,45±0,043	0,47±0,035	0,72±0,02*	0,54±0,059
NO³-, мкмоль/мг білка	17,76±3,75	24,66±3,56	67,94±5,5**	49,07±5,83#
NOS, нмоль NO ² /хв мг білка	6,99±1,09	8,84±0,31	11,21±0,8*	8,45±0,48#

Примітки:

ВИСНОВКИ. За умов ЕЦД підвищується концентрація вільного L-аргініну та відбувається інтенсифікація шляху окисного метаболізму L-аргініну в лейкоцитах периферичної крові щурів, що експериментально підтверджується зростанням активності NOS.

Введення БФЕКЛ тваринам з ЕЦД чинить позитивний коригувальний вплив на організм,

знижуючи надпродукцію NO. Встановлений біологічний ефект досліджуваного екстракту ми пояснюємо наявністю у його складі сполук, які проявляють антиоксидантну дію і, таким чином, здатні пригнічувати утворення активних форм кисню та азоту [4].

^{1. * -} різниця вірогідна порівняно з контролем, р<0,05.

^{2. # -} різниця вірогідна порівняно з діабетом, p<0,05.

СПИСОК ЛІТЕРАТУРИ

- 1. Вплив агматину на метаболізм L-аргініну в еритроцитах крові за умов стрептозотоцин-індукованого діабету в щурів / І. Ференц, І. Бродяк, М. Люта [та ін.] // Укр. біохім. журн. 2012. **84**, № 3. С. 55—62.
- 2. Профіль прозапальних цитокінів при цукровому діабеті 1-го типу / Ю. Кияк, Н. Фартушок, Ю. Онищук [та ін.] // Фізіол. журн. 2012. № 5. С. 65–69.
- 3. Старостина Е. Г. Диабетический кетоацидоз и гиперосмолярное состояние при сахарном диабете. Основные подходы к терапии / Е. Г. Старостина // В мире лекарств. 1999. № 3. С. 24–28.
- 4. Хохла М. Дослідження компонентного складу екстракту козлятника лікарського / М. Хохла, Г. Клевета, М. Лупак // Вісник Львів. ун-ту, Серія біологічна. 2013. Вип. 62. С. 55–60.
- 5. Цитологічна та біохімічна характеристика периферичної крові щурів за умов експериментального цукрового діабету 1-го типу та введення галеги лікарської / М. Хохла, Г. Клевета, Я. Чайка [та ін.] // Біологічні студії / Studia Biologica. 2012. № 6(1). С. 37–46.

- 6. Boyum A. Separation of leucocytes from blood and bone marrow, with special reference to factors which influence and modify sedimentation properties of hematopoietic cells / A. Boyum // Scand. J. Clin. Lab. Invest. 1968. **21** (Suppl.) P. 1–109.
- 7. Dawson J. A microtiter-plate assay of nitric oxide synthase activity / J. Dawson, R. G. Knowles // Mol. Biotechnol. 1999. **12**, № 3. P. 275–279.
- 8. Groves J. T. Nitric oxide synthase: models and mechanisms / J. T. Groves, C. C-Y. Wang // Curr. Opin. Chem. Biol. 2000. **4**, № 6. P. 687–695.
- 9. Miranda K. A. Rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite / K. A. Miranda // Nitric Oxide. 2001. 5, №. 1. P. 62–71.
- 10. Protein measurement with Folin phenol reagent / O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall // J. Biol. Chem. 1951. 193. №1. P. 265–275.
- 11. Weber C. A Modification of Sakaguchi's Reaction for the Quantitative Determination of Arginine / C. J. Weber // J. Biol. Chem. 1930. **86**. P. 217.
- М. И. Лупак, О. П. Канюка, Г. Я. Гачкова, Я. П. Чайка, М. И. Скибицкая, Н. О. Сибирная ЛЬВОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ ИВАНА ФРАНКО

ВЛИЯНИЕ БЕЗАЛКАЛОИДНОЙ ФРАКЦИИ ЭКСТРАКТА ГАЛЕГИ ЛЕКАРСТВЕННОЙ НА СИСТЕМУ L-АРГИНИН/NO В ЛЕЙКОЦИТАХ ПЕРИФЕРИЧЕСКОЙ КРОВИ КРЫС В УСЛОВИЯХ ЭКСПЕРИМЕНТАЛЬНОГО САХАРНОГО ДИАБЕТА 1 ТИПА

Резюме

Исследовано влияние безалкалоидной фракции экстракта галеги лекарственной на NO-синтазный путь метаболизма L-аргинина в лейкоцитах периферической крови крыс в условиях экспериментального сахарного диабета (ЭСД) 1 типа. Введение его животным с ЭСД оказывает положительное корректирующее влияние на организм, снижая сверхпроизводство оксида азота (NO) путем ингибирования активности NO-синтазы.

КЛЮЧЕВЫЕ СЛОВА: галега лекарственная, сахарный диабет 1 типа, лейкоциты, L-аргинин, NO-синтаза.

M. I. Lupak, O. P. Kanyuka, H. Ya. Hachkova, Ya. P. Chaika, M. I. Skybitska, N. O. Sybirna IVAN FRANKO LVIV NATIONAL UNIVERSITY

INFLUENCE OF ALKALOID-FREE FRACTION OF GALEGA OFFICINALIS EXTRACT ON L-ARGININE/NO SYSTEM OF RATS LEUKOCYTES UNDER THE EXPERIMENTAL DIABETES MELLITUS TYPE 1

Summary

The effects of the alkaloid-free fraction of Galega officinalis extract (AFF GOE) on NO-synthase metabolic pathway of L – arginine was investigated in peripheral blood leukocytes of rats under conditions of experimental diabetes mellitus (EDM) type 1. Application of alkaloid-free fraction of Galega officinalis extract (AFF GOE) under EDM reveals a positive corrective effect on the organism, reducing the production of nitric oxide (NO) by inhibiting the activity of NO-synthase.

KEY WORDS: Galega officinalis, diabetes mellitus type 1, leukocytes, L-arginine, NO-synthase.

Отримано 04.08.14

Адреса для листування: М. І. Лупак, Львівський національний університет імені Івана Франка, вул. Грушевського, 4, Львів, 79005, Україна.