Background. A microcirculatory bloodstream is a target, source and reason of the pathological process in patients with systemic connective tissue diseases.

Objectives. This study is focused on meta-analyses of biopsy material of skin flaps harvested from patients' fingers to identify specific morphological changes.

Methods. A retrospective analysis of the medical records of 39 examinees with systemic sclerosis (SSc), 45 with Systemic Lupus Erythematosus (SLE), and 45 with rheumatoid arthritis (RA) was performed. The condition of peripheral hemodynamics was examined with longitudinal rheovasography of arms and legs. Endothelin-1 (ET1) concentration was evaluated by immunoenzymatic method. We assessed other results of clinical and laboratory tests to compare them with morphological changes of the microcirculatory bed.

Results. Most patients involved suffered from abnormal peripheral hemodynamics. It was revealed that kidneys, lungs or heart were damaged more frequently in the patients with peripheral blood circulation disorders, which were the most significant in the patients with SSc (p<0.05). Disorders of peripheral blood flow were exacerbated in case of lengthening of the disease course. Concentration of ET1 was relevantly higher in the patients with peripheral blood flow disorders. Number of pathologic capillaries was the highest in the SSc patients.

Conclusions. In terms of integral estimation, extremely significant changes of microcirculatory bloodstream were evidenced in the patients with SSc. However, some morphometric peculiarities were revealed in the patients without peripheral blood flow disorders. Thus, normal rheovasography did not exclude any microcirculation disorders.

KEY WORDS: microcirculation; systemic lupus erythematosus (SLE); systemic sclerosis (SSc); rheumatoid arthritis (RA); biopsy; rheovasography.

Introduction

Manifestations of systemic connective tissue diseases are very diverse. However, one thing they all have in common is vasculitis/vasculopathy that results in systemicity and development of permanent malfunctioning of body organs and systems. Several studies show that patients with systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and rheumatoid arthritis (RA) experience such symptoms as Raynaud syndrome, livedo reticularis, recurrent thrombophlebitis, digital vasculitis, capillaritis of palms and soles, etc. Among the manifestations listed above the most common sign is Raynaud syndrome that is characterized by cascade disruption of microcirculation: destruction of vascular endothelium, capillary basement membrane reduplication, intimal proliferation of smooth muscle cells with collagen hyperproduction and predisposition to vasoconstriction, vascular wall thickening with luminal occlusion, which is manifested by generalized clinical symptoms. Meanwhile, endothelium is a target, source and reason of the pathological process. It becomes a receptive field for binding of circulating immunoglobulins, immune complexes, a complement and attacks of sensitized T-lymphocytes. It itself produces vascular endothelial growth factor, endothelin 1, etc. Similar findings are presented in the literature [1, 2, 3, 4].

Numerous studies have been conducted in order to identify noninvasive methods of studying microcirculatory bloodstream and detect specific pathological characteristics in favour of one or another connective tissue disease to help confirm a diagnosis. Consequently, the method of nailfold videocapillaroscopy is relevant [5, 6, 7]. Moreover, the results of nailfold videocapillaroscopic examination are included into diagnostic classification by EULAR criteria of systemic sclerosis [5], indicating their high specificity and sensitivity.

For an overall assessment of capillaroscopic pattern, the following indicators are used: capillary length, intercapillary distance, loop diameter, internal diameter, capillary width,
apex width, venous limb, arterial limb [7]. Data
analysis shows typical changes, for example,
SSc: giant capillaries, loss of capillaries with
areas of avascularisation, ramified capillaries
with pathological neoangiogenesis and severe
derangement of capillary structure [5]. Nailfold
capillaroscopic form changes are less symptom-
atic in cases of other diseases, for example
in SLE. According to the literature concerning
the above-mentioned pathology, they are
present in 30-75% of cases. SSc (in contrast to
SLE) characteristically reveals these changes
that occur in 99% of cases at various stages [5,
6]. The most frequent alterations in the patients
with SLE include increased tortuosity, elongated
loops, and meandering bizarre loops [5]. The
patients with RA are reported to have increased
capillary tortuosity and prominent, clearly
visible subpapillary venous plexus [5]. At
the same time, according to the study of autoim-
immune processes, in some pathological condi-
tions, correlation between the rate of biologi-
cally active substances and results of capilla-
roscopy was revealed. For example, in cases of
SLE a relation between concentration of endo-
theilin-1 (ЕТ-1) and angioscopic characteristics
of microcirculatory bloodstream (MCB) was
found [8]. Meanwhile, increase in anti-endo-
theilal antibody titre in cases of SSc was present
in 22-86% of cases and combined primarily with
lung damage and peripheral vascular bed [4].

A few researches describe the results of
immune histochemical tests that allows establish-
ing that CD20+, B-lymphocytes, macropha-
gocytes and dendritic cells, Ig G, A, M, and a
complement in the form of deposits along
elastic membrane of a vascular wall prevail
among the cells that infiltrate a vessel wall [9].

The revealed morphological abnormalities
and immunological disorders in systemic di-
seases of connective tissue combined with
endothelial dysfunction and coagulation sys-
tem disorders create favourable conditions for
development of severe systemic complications.

The research is aimed at a retrospective
study of morphological condition of a peripheral
vascular bed in the patients with SLE, SSc, and
RA to compare morphological changes with
clinical and laboratory data.

Methods

Retrospective analysis of the medical records
of 129 patients with rheumatic diseases was
performed: 39 were diagnosed with SSc, 45 –
with SLE, and 45 – with RA (all were the patients
of Ternopil University Hospital, Department of
Rheumatology, 2001-2004). The statistical
analysis revealed a typical situation for this
category of diseases – predominance of women
(86.05%) of fertile age. The average duration of
the disease was 8.14±0.53 years. The archive of
biopsy material of skin flaps harvested from
patients’ fingers was reviewed that allowed
morphometric analysis. The decision for biopsy
was made by a rheumatologist during the
treatment at the Department of Rheumatology.
For histological studies, pieces of skin were fixed
in 10% neutral formalin solution. Subsequent
processing of the material followed by embed-
ment in paraffin blocks was carried out by a
conventional technique. The sections obtained
by a sliding microtome were stained with
hematoxylin-eosin. The histological specimens
were studied using the optical microscope SEO
SCAN and images were made with the Vision
CCD Camera with a histological image display
system. The condition of peripheral hemody-
namics was examined by longitudinal rheovaso-
graphy of forearm and legs by means of soft-
ware-hardware complex of automated analysis
USRH-1 ("УСРГ-01"). In the process of rheovaso-
graphic analysis the following medical paramet-
ers were estimated: the regularity of pulse
waves, their appearance – upward and downward
gradients, the type of a top (apex), extent of
incisura, presence of additional waves, their
localization on the descending part of a curve.
The following measurements were analysed:

As – percussion systolic wave amplitude of
a rheogram, Ohm;

RI – rheographic index, that measures a
magnitude of pulse volume, in other words a
systolic flow; that is a correlation of a variable
and a constant dimensions of impedance of the
researched area, namely, a percussion wave of
a rheogram and calibration impulse magnitude,
relative units (RU);

AI – interval between the isoline and incisu-
res on the descending part of a curve, Ohm;

DI – dicrotic index, which reflects the con-
tdition of the tone of arteries and precapillary
vessels, %.

The main indicator that was used for
analysis was a rheographic index that measured
the magnitude of pulse volume that was a
systolic flow defined by a ratio of a percussion
wave of a rheogram and calibration impulse
magnitude, relative units (RU).

The condition of endothelium was examined
in terms of one of the main integral indicators
of its functional capacity, i.e. ET1. The contents
of ET1 were determined using an immuno-

ISSN 2413-6077. IJMMR 2019 Vol. 5 Issue 2

O.I. Zarudna et al. 33
enzymatic method, which was based on the principle of competitive immunoenzymatic analysis, involving a reagent kit Peninsula Laboratories Inc. (USA).

The severity of inflammation was determined by erythrocyte sedimentation rate (degree 1 – ESR <20 mm/hr, degree 2 – ESR 20-40 mm/hr, degree 3 – ESR >40 mm/hr).

All case histories contained informed consents for the research. The study was conducted in accordance with the Declaration of Helsinki. The Protocol was approved by the Committee on Bioethics of I. Horbachevsky Ternopil National Medical University.

Statistical processing of the research results was performed by parametric analysis and non-parametric analysis using the Student’s t-test and Mann-Whitney U-test by means of software package Microsoft EXCEL 5.0 and Statistica 10 (StatSoft). p values lower than 0.05 were considered to be statistically significant.

Results

All cases were divided into two groups according to the state of peripheral hemodynamics, which was examined using longitudinal rheovasography of forearm and legs.

The majority of patients, the model participants of the research, had abnormal peripheral hemodynamics (group 2). The ratio of the above-mentioned patients to the patients with normal peripheral hemodynamic parameters (group 1) was 5.1:1.0. Clinical assessment of the involved patients is presented in Table 1.

Assessment of peripheral hemodynamics allowed revealing significant changes in indices of longitudinal rheovasography of forearms and legs (Table 2).

Morphometric analysis of skin biopsy was conducted in 26 model patients (Table 3, Table 4).

Biopsy results of the patients with different nosology and peripheral blood circulation disorders are presented at Figures 1, 2, and 3.

Notably, microscopic examination revealed that general architectonics of vessel walls was not damaged. Visible hyperplasia of endotheliocytes in all categories of patients was also evidenced, which may be treated as an adaptive mechanism in cases of blood circulation disorders.

The results of patients’ blood tests for concentration of ET1 (Table 5) pointed to its extremely high content in the patients with peripheral blood circulation disorders in contrast to donors’ indices.

<p>| Table 1. Clinical Assessment of the Patients with/without peripheral blood circulation disorders |
|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Indicant</th>
<th>Patients with normal peripheral hemodynamic parameters (1<sup>st</sup> group)</th>
<th>Patients with abnormal peripheral hemodynamics (2<sup>nd</sup> group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute numbers</td>
<td>%</td>
<td>Absolute numbers</td>
</tr>
<tr>
<td>Age (years):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>under 20</td>
<td>3</td>
<td>2.3</td>
</tr>
<tr>
<td>20-44</td>
<td>9</td>
<td>6.9</td>
</tr>
<tr>
<td>45-59</td>
<td>5</td>
<td>3.9</td>
</tr>
<tr>
<td>60 and above</td>
<td>4</td>
<td>3.1</td>
</tr>
<tr>
<td>Males</td>
<td>6</td>
<td>4.7</td>
</tr>
<tr>
<td>Females</td>
<td>15</td>
<td>11.6</td>
</tr>
<tr>
<td>SLE</td>
<td>9</td>
<td>6.9</td>
</tr>
<tr>
<td>SSc</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>RA</td>
<td>11</td>
<td>8.5</td>
</tr>
<tr>
<td>Activity of the 1<sup>st</sup> degree</td>
<td>2</td>
<td>1.6</td>
</tr>
<tr>
<td>Activity of the 2<sup>nd</sup> degree</td>
<td>15</td>
<td>11.6</td>
</tr>
<tr>
<td>Activity of the 3<sup>rd</sup> degree</td>
<td>4</td>
<td>3.1</td>
</tr>
<tr>
<td>Duration of a disease < 1 yr</td>
<td>3</td>
<td>2.3</td>
</tr>
<tr>
<td>Duration of a disease 1-5 yrs</td>
<td>6</td>
<td>4.7</td>
</tr>
<tr>
<td>Duration of a disease 5-10 yrs</td>
<td>5</td>
<td>3.9</td>
</tr>
<tr>
<td>Duration of a disease >10 yrs</td>
<td>7</td>
<td>5.4</td>
</tr>
<tr>
<td>Kidney damage</td>
<td>6</td>
<td>4.7</td>
</tr>
<tr>
<td>No kidney damage</td>
<td>15</td>
<td>11.6</td>
</tr>
<tr>
<td>Cardiac involvement</td>
<td>7</td>
<td>5.4</td>
</tr>
<tr>
<td>No cardiac involvement</td>
<td>14</td>
<td>10.9</td>
</tr>
<tr>
<td>Lung damage</td>
<td>5</td>
<td>3.9</td>
</tr>
<tr>
<td>No lung damage</td>
<td>16</td>
<td>12.4</td>
</tr>
</tbody>
</table>
At the same time, concentration of ET-1 in the patients without vessel disorders is not substantially different from normal range.

Discussion

Among the examinees, the detection rate of peripheral hemodynamic disorders in the...
Table 4. Distribution of skin hemocapillaries of the patients over the duct width

<table>
<thead>
<tr>
<th>Disease</th>
<th>No peripheral blood circulation disorders (group 1, n=11)</th>
<th>Peripheral blood circulation disorders (group 2, n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The number of hemocapillaries and their diameter</td>
<td>The number of hemocapillaries and their diameter</td>
</tr>
<tr>
<td></td>
<td>8-12 μm</td>
<td>15-25 μm</td>
</tr>
<tr>
<td>Normal range</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Rheumatoid arthritis, n=8</td>
<td>80.6±3.6</td>
<td>12.1±0.6</td>
</tr>
<tr>
<td>Systemic sclerosis, n=8</td>
<td>71.7±3.3</td>
<td>24.5±1.1</td>
</tr>
<tr>
<td>Systemic lupus erythematosus, n=10</td>
<td>69.2±3.3</td>
<td>29.7±1.4</td>
</tr>
</tbody>
</table>

Notes:
p^1 – statistically significant difference between the normal range and the number of normal-sized capillaries (8-12 μm) in the patients of both groups;
p^2 – statistically significant difference between the number of capillaries 8-12 μm in diameter in the patients of the groups 1 and 2.

patients with RA was 75.6 %, which is slightly higher than the established results of statistical researches. Peripheral blood circulation disorders were diagnosed in the patients with SLE in 80 % of cases, in the patients with SSc – in 97.4 % of cases, which is consistent with literature [10, 11].

Despite nearly equal distribution of patients in every group by age, duration of a disease, activity of the inflammatory process, it has been revealed that a kidney, lung or heart are damaged more frequently in the patients with peripheral blood circulation disorders. Such results are probably associated with the development of systematicity, which is caused by peripheral blood flow and microcirculation disorders.

Figure 1. Biopsy material of skin flaps harvested from the finger of the patient F. with rheumatoid arthritis, medical record of the in-patient patient No. 01/10064. Staining H&E. ×600

Figure 2. Biopsy material of skin flaps harvested from the finger of the patient Sh. with systemic lupus erythematosus, medical record of the in-patient patient No. 01/00920. Staining H&E. ×600

Figure 3. Biopsy material of skin flaps harvested from the finger of the patient Kh. with systemic sclerosis, medical record of the in-patient patient No. 01/07587. Staining H&E. ×600
In the rheograms of the patients with peripheral blood circulation disorders the height of percussion wave and RI decrease is related to the increase in duration of the disease. Thus, RI in the forearms of the patients, who suffer from the disease for a period of less than 1 year, decreased by 19.07%. At the same time, the systolic blood flow in the forearms of the patients, who suffer for 10 or more years, decreased by 44.08%. Meanwhile, DI value points to hypertonia of precapillary vessels in all investigated groups, but this index is statistically lower (p<0.001) among the patients, who suffer for a period of less than 1 year, and increases if the duration of the disease is longer.

In the rheograms of the patients with peripheral blood circulation disorders the height of percussion wave and RI decrease is related to the increase in duration of the disease. Thus, RI in the forearms of the patients, who suffer from the disease for a period of less than 1 year, decreased by 19.07%. At the same time, the systolic blood flow in the forearms of the patients, who suffer for 10 or more years, decreased by 44.08%. Meanwhile, DI value points to hypertonia of precapillary vessels in all investigated groups, but this index is statistically lower (p<0.001) among the patients, who suffer for a period of less than 1 year, and increases if the duration of the disease is longer.

In the patients divided by the nosological units, the lowest rates of systolic flow were observed in patients with SSc, meanwhile, RI decreased by 46.05%; the patients with RA and a deficit in RI, representing 41.45%, were the second; consequently, the smallest changes in RI were found in the patients with SLE, whose systolic blood flow in forearms decreased by 28.29%. The tonus of precapillary vessels, which was significantly higher in the patients with SSc (p<0.001), was changed compared to the above-mentioned data.

Analysis of rheovasography indices in terms of the degrees of inflammatory process activity (which was determined by the erythrocyte sedimentation rate) revealed no statistically significant difference. However, at the highest degree of the inflammatory process activity DI was of the smallest value and significantly different (p<0.001) from the indices at the 1st and 2nd degrees of activity.

Thus, the most significant peripheral blood circulation disorders were found in the patients with SSc (p<0.05); disorders of peripheral blood flow were exacerbated in case of lengthening of disease course. Hypertonia of peripheral vessels and decrease in systolic blood flow were reflected in flattening of a rheographic curve and rheographic index decrease. Hypertonia of arterioles and precapillary vessels was evident by high location of incisures in relation to the apex of the rheographic curve and a high DI value.

The analysis of morphometric data revealed that the average density of capillaries per unit area statistically decreased only in the patients with peripheral blood flow disorders in cases of SLE and SSc.

Along with the decrease in the number of normal-sized capillaries, dilated and megacapillaries were present. Meanwhile, their number was small in the patients without peripheral blood flow disorders and statistically significant in the patients with hemodynamic disorders.

In terms of relative values, the number of pathologic capillaries was 66.7% in cases of RA, 92.0% in cases of SSc and 91.5% in cases of SLE.

The concentration of ET-1 was significantly higher in the patients with peripheral blood flow disorders. To examine the changes in concentration of ET-1 in detail, all the patients with the signs of vascular bed damage were divided into three groups by the degree of the inflammatory process activity. The revealed changes were reflected in gradual increase in concentration of ET-1 in case of a higher degree of inflammatory process activity, though there was no statistically significant difference between the indices.

According to the results of our study it has been established that microcirculatory bed changes in the patient with SSc and SLE complied with other literature regarding investigation of non-invasive methods of studying of microcirculatory bloodstream such as nailfold videocapillaroscopy [5, 6, 7]. Minimal changes have been revealed in the patients with RA [5].

Conclusions

It should be noted that peripheral hemodynamic disorders are followed by significant microcirculatory bloodstream disorders such as decrease in average density of hemocapillaries per unit area, decrease in the number of nor-

<p>| Table 5. Concentration of ET1 in the patients with rheumatic diseases with/without peripheral blood circulation disorders |</p>
<table>
<thead>
<tr>
<th>Group of patients</th>
<th>ET1, pkg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donors, n=10</td>
<td>1.8±0.7</td>
</tr>
<tr>
<td>Group 1, n=5</td>
<td>1.9±0.5</td>
</tr>
<tr>
<td>SLE, n=10</td>
<td>19.0±1.4</td>
</tr>
<tr>
<td>SSC, n=10</td>
<td>23.1±1.5</td>
</tr>
<tr>
<td>RA, n=10</td>
<td>18.9±1.4</td>
</tr>
</tbody>
</table>

Notes:

\(p_1 \) – statistically significant difference between indices in patients and donors;

\(p_2 \) – statistically significant difference between indices in patients of the groups 1 and 2.

mal-sized capillaries, and increase in the number of dilated and megacapillaries. Morphometric changes are accompanied by endothelial dysfunction with a high concentration of ET-1. In terms of integral estimation extremely high level of changes is evidenced in the patients with SSc which complies with current understanding of this disease.

However, some morphometric peculiarities were revealed in the patients without peripheral blood flow disorders: in cases of adequate density of hemocapillaries per unit area, there was a decrease in the number of normal-sized capillaries and presence of dilated and megacapillaries. The above-mentioned changes were not followed by endothelial dysfunction in relation to ET1 indicator. Thus, normal rheovasography did not preclude the presence of microcirculation disorders since biopsy revealed deeper changes in microcirculatory bed.

The further research should be focused on the search for non-invasive methods of studying microcirculatory bloodstream in the patients with rheumatic diseases, which is the main cause of the development of systematicity.

Acknowledgements: The authors are gratefully acknowledged to Mariana Karaneyych (PhD in Philology, Associate Professor) with the help in translation of this article.

Funding
This research received no external funding.

Conflict of Interests
The authors declare no conflict of interest.

Author Contributions
Zarudna O.I. – conceptualization, data curation, formal analysis, investigation, writing – original draft and review & editing; Venher I.K. – conceptualization, data curation, validation, methodology; Dovbush A.V. – formal analysis, investigation, visualization, software.

СИСТЕМНИ ЗАХВОРЮВАННЯ СПОЛУЧНОЇ ТКАНИНИ: ФОКУС НА МІКРОЦИРУЛЯРОННЕ РУСЛО

О.І. Зарудна, І.К. Венгер, А.В. Довбуш
ТЕРНОПІЛЬСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ ІМЕНІ І.Я. ГОРБАЧЕВСЬКОГО, ТЕРНОПІЛЬ, УКРАЇНА

Вступ. Прояви системних захворювань є надзвичайно різноманітними. Їх об’єдную наявність васкуліту/васкулопатії, що й зумовлює системність і приводить до розвитку спільних порушен функції органів і систем. При цьому відмічено, що причиною патологічного процесу є ендотелій.

Мета. Провести комплексне вивчення стану мікроциркуляторного русла у хворих на системний червоний вовчак (СЧВ), системну склеродермію (ССД) та ревматоїдний артрит (РА).

Методи. Для досягнення мети проведено ретроспективний аналіз архівних історій хвороби 129 хворих на системні червоні вовчки (СЧВ), системну склеродермію (ССД) та ревматоїдний артрит (РА). Переглянуто архів біоптатів шкірного клаптя пацієнтів, на основі чого проведено морфометричний аналіз. Стан периферичної гемодинаміки вивчали за результатами поздовжньої реовазографії передпліч та гомілок. Вміст ЕТ-1 визначено за імуноферментною методикою, яка базується на принципі конкурентного імуноферментного аналізу. Клінічні та лабораторні дані співставлені з результатами морфологічного дослідження біоптатів.

Результати. У переважної більшості пацієнтів виявлено розлади периферичної гемодинамики. Встановлено, що ураження нирок, легень, серця частіше спостерігається у хворих з розладами периферичного кровоплину, проте найглибші порушення виявлені у хворих на системну склеродермію (p<0,05). Порушення периферичної гемодинамики супроводжуються підвищенням концентрації ЕТ-1 та поглищуються за умов зростання тривалості хвороби. Кількість патологічних капілярів найвища у хворих на системну склеродермію.

Висновки. Крайній ступінь розладів мікроциркуляторної системи з інтегральною оцінкою клініко-лабораторних та морфометричних досліджень, виявлений у хворих на ССД. Однак знайдено деякі морфологічні особливості у пацієнтів без розладів периферичного кровоплину. Отже, відсутність патологічних змін щодо результатами реовазографії не виключає розладів на мікроциркуляторному рівні.

КЛЮЧОВІ СЛОВА: мікроциркуляція; системний червоний вовчак (СЧВ), системна склеродермія (ССД), ревматоїдний артрит (РА); біопсія; реовазографія.
References

doi: 10.1016/j.ejr.2010.12.003

doi: 10.1155/2015/974530

doi: 10.1007/s10067-009-1308-7

https://pdfs.semanticscholar.org/a10f/9bc96139a020f252e49f80d9d65be4b72e24.pdf

Received 03 July 2019; revised 03 October 2019; accepted 23 October 2019.

This is open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

O.I. Zarudna et al.