ВДОСКОНАЛЕННЯ МЕТОДИК АНАЛІЗУ БІОСАСЕПТОМЕТРИЧНИХ СИГНАЛІВ

В. М. Будник, В. Є. Васильєв, М. М. Будник

Інститут кібернетики ім. В. М. Глушкова НАН України

Предложены количественные показатели, характеризующие сигналы магнитной восприимчивости биологических объектов. Эти показатели тестировались на экспериментальных данных от калибровочной катушки и образцах нанопорошков оксидов железа. Показано линейность экспериментальных зависимостей, что подтверждает способность созданного биосасептометра для количественных измерений наномагнитних материалов, перспективных для биомедицинских применений.

Раніше за проектом УНТЦ № 3074 (2006–2008) було виготовлено СКВІД-сасептометричну систему [1]. На сьогодні за її допомогою проводяться вимірювання розподілу магнітних наночастинок (МНЧ) у тілі лабораторних щурів [2, 3]. Але кількісні показники біосасептометрії не були знайдені та не обчислювались автоматично програмним забезпеченням.

Аналіз сигналів від зразків МНЧ. Прилад та експериментальна методика вимірювань детально описані в [1]. Для розуміння методики обробки на рисунку 1 наведено вигляд карти магнітного поля (КМП), звідки видно, що для карти № 2 з набору поле в максимумі В_{мах} = 3972 відліків АЦП, а в мінімумі – В_{мі№} = 3759. Інформативний (корисний) сигнал сасептометра від МНЧ, поміщеними в поле намагнічування, та калібрувальний сигнал СКВІД-магнітометра описуються принципово різними виразами.

Області, в яких концентруються МНЧ в тілі малих лабораторних тварин та калібровані зразки МНЧ мають відносно малі розміри (декілька см), тому їхній розподіл поля на КМП подібний до дипольного, тобто має два сильних екстремуми поля, В_{МАХ} та В_{МІХ} (позначені знаком «+» та «-» на рис. 1).

Рис. 1. КМП № 2.

Інформативним параметром є різниця поля між цими екстремумами Д (розмах КМП, 1), тому що вона, як відомо, пропорційна моменту магнітного диполя:

$$\Delta = B_{MAX} - B_{MIN} \tag{1}$$

У сасептометрі поле намагнічування змінюється за синусоїдальним законом. Отже, максимальний відгук від МНЧ буде мати місце 2 рази за період –

на максимумі та мінімумі поля намагнічування. Проте значення різниць (1) можуть трохи відрізнятися в цих точках за рахунок: 1) впливу магнітних перешкод; 2) похибки струму в котушках (шуми генератора струму, дрейф опору індукційних котушок чи параметрів електроніки внаслідок нагрівання та ін.); 3) неточності визначення моментів екстремумів намагнічування програмою.

Тому для зменшення похибки розмах КМП усереднюють:

$$\Delta_{CEP} = \frac{\Delta(+) + \Delta(-)}{2}, \qquad (2)$$

де Д (+ / –) – розмах КМП, яка відповідає максимуму / мінімуму намагнічування. Також відомо, що сигнал сасептометра пропорційний полю, а, отже, і струму намагнічування, тому його необхідно нормувати на струм:

$$S_{INF} = \frac{\Delta_{CEP}}{I_K},\tag{3}$$

де *I_к* – амплітуда струму в індукційних котушках.

Аналіз сигналів при калібруванні. Калібрування виконують за допомогою міри магнітної індукції (MMI) 3-го розряду, повіреної в Харківському центрі СМС. Амплітуду розмаху каліброваного поля від MMI у відліках АЦП оцінюють згідно (4) як різницю середніх значень на двох КМП:

$$S_K = B_{CEP}(+) - B_{CEP}(-),$$
 (4)

де B_{CEP} (+/–) – середній сигнал на КМП, який відповідає максимуму / мінімуму сигналу намагнічування. Останній знаходять як середнє арифметичне від значень поля в екстремумах КМП:

$$B_{CEP} = \frac{B_{MAX} + B_{MIN}}{2} \,. \tag{5}$$

Програмна реалізація. Для автоматизації обчислень було вдосконалено програму аналізу. На рисунку 2 наведено частину вікна програми, де відображені усереднені сигнали. У окремому вікні (справа зверху) наведені різні дані, отримані при обробці сиг-

[©] В. М. Будник, В. Є. Васильєв, М. М. Будник

налів. У нижній половині цього вікна видно середній сигнал на КМП, який відповідає максимуму $B_{CEP}(+) = 16059$ та мінімуму намагнічування $B_{CEP}(-) = -16025$ (5), а також максимальний розмах (1) на КМП для

позитивної частини Д(+) = 90 та для негативної частини Д(-) = -128 усередненого сигналу. Показники (1-5) розраховуються за формулами у програмі MS Excel.

Рис. 2. Частина вікна програми аналізу усереднених сигналів.

Калібрування СКВІД-магнітометра. Спеціально виготовлену калібрувальну котушку, повірену як міру магнітної індукції (ММІ) з коефіцієнтом передачі 4,19 пТл/мкА, одягають на хвостовик кріостата. На частоті 110 Гц у котушку з генератора послідовно подають калібрований струм прямокутної форми амплітудою 0,4, 1, 2 та 4 мкА. Нульове значення вихідного сигналу СКВІД-магнітометра отримаємо при відсутності струму в калібрувальній котушці. При кожному значенні струму на основі відомого коефіцієнта передачі ММІ обчислюють магнітне поле на вході СКВІД-магнітометра. Результати калібрування показано на рисунку 3.

Рис. 3. Калібрувальна залежність (4) СКВІД-магнітометра.

З рисунка 3 видно, що вихідний сигнал пропорційний струму, а отже і магнітному полю. Для отримання якісної калібрувальної залежності потрібно провести балансування вхідної антени магнітометра та не застосовувати «нормування» сигналу у ПЗ. Отримана калібрувальна залежність підтверджує лінійність між вхідним та вихідним сигналами з дуже великою точністю, що підтверджено високою точністю лінійної регресії з коефіцієнтом R²=0,9999.

Дослідження зразків МНЧ. Під час досліджень

використано МНЧ виробництва фірми Sigma Aldrich у вигляді нанопорошків Fe₂O₃ діаметром 20–25 нм та Fe₃O₄ діаметром 20–30. Для досліджень виготовлено набори каліброваних зразків, вагою 1, 2, 4, 6, 8 мг. Їх досліджено при наступних умовах: струм 1,2 A, частота намагнічування 87,1 Гц, , зразок розміщено вертикально в центрі, відстань до дна кріостата 2 мм, висота зразка 8 мм.

З рисунка 4 видно, що для зразків масою 1 мг є достовірна лінійна залежність (R²>0,9).

Рис. 4. Залежності інформативного сигналу (3) для зразків Fe₂O₃ і Fe₃O₄.

Висновки. Вдосконалено методику аналізу даних від зразків МНЧ та сигналів калібрування. Модернізовано ПЗ для автоматичного обчислення кількісних показників: $B_{CEP}(+)$, $B_{CEP}(-)$, $\mathcal{I}(+)$ та $\mathcal{I}(-)$. Ілюстрація коректності показників та методик обробки продемонстрована на прикладі аналізу експериментальних даних, а саме калібрування магнітометра та дослідження зразків МНЧ. Показано, що калібрувальна залежність магнітометра лінійна з великою точністю (R²=0,999). Знайдено, що для порошкових зразків масою 1 мг є достовірна лінійна залежність (R²>0,9).

Література

1. Розробка СКВІД-магнітометричної системи для дослідження МНЧ у тілі лабораторних тварин / Риженко Т., Войтович І., Мінов Ю. [та ін.] // Електроніка і зв'язок. – 2008. – № 3–4. – С. 164–168.

2. Виявлення здатності СКВІД-магнітометрії до візуалізації магніточутливого комплексу на основі наночасток оксиду заліза та доксорубіцину у тілі щурів-пухлиноносіїв / Будник В., Будник М., Орел В. [та ін.] // Електроніка і зв'язок. – 2010. – № 2. – С. 137–141.

3. Неинвазивный метод определения накопления железа в

печени крыс со свинцовой интоксикацией / Лубянова И., Краснокутская Л., Дитруха Н. [и др.] // Український журнал з проблем медицини праці. – 2011. – № 3(27). – С. 43–46. 4. Дослідження характеристик та калібрування СКВІД-сасептометра на основі зразків магнітних наночастинок / Будник В., Сутковий П., Мінов Ю., Будник М. // Біологічна і медична інформатика та кібернетика (БМІК-2012) : матеріали щорічної науково-технічної школи-семінару, ФМШ Жукин, – К. : НАН України, Інститут кібернетики імені В. М. Глушкова. – С. 94–100.