General characteristics of JNK activation pathways.

A. L. Zahayko, O. A. Krasilnikova, A. B. Kravchenko

Abstract


c-Jun N-terminal protein kinase (JNK) – members of motogen-activated proteinkinase (MAP-kinases) families a activate in response to various factors, oxidative, thermal, osmotic stress, the effect on the cells of cytokines and growth factors, and many others are among them. Their activation is involved in the pathogenesis of insulin resistance, diabetes and related pathologies. This fact is determined the choice of JNK, as a therapeutic target for new drugs design.

The aim of this work was the analysis and synthesis of information on the ways of JNK activation, as well as the basic cell metabolites that are also involved in this process.

There are basic pathways of JNK activation, including MAP kinase cascade start mediated interaction of ligands with receptors on the plasma membrane, reactive oxygen species formation, and endoplasmic reticulum stress. The main cellular metabolites involved in activation of JNK are methylglyoxal, lyso- and sphingolipids, fatty acids (FFA).

In the cell at the same time, there are several major enzyme activation mechanisms. Some metabolites, particularly FFA and lysolipids have their own activation pathways. There is tissue specificity of JNK activation, it is important to consider in the design of new JNK inhibitors.


Keywords


c-Jun N-terminal proteinkinase; mitogen-activated proteinkinase; reactive oxygen species; stress EPR; fatty acids; methylglyoxal; sphingolipids.

References


Cuadrado A. Mechanisms and functions of p38 MAPK signalling. Biochem / A. Cuadrado, A. R. Nebreda // J. 2010. – 429(3). – P. 403–417.

p38α suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway / L. Hui, L. Bakiri, A. Mairhorfer [et al.] // Nat. Genet. – 2007. – 39. – P. 741–749.

Network motifs in JNK signaling / V. Sehgal, P. T. Ram // Genes. Cancer. 2013. – 4. – P. 409–413.

Kyriakis J. M. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update / J. M. Kyriakis, J. Avruch // Physio.l Rev. – 2012. 92(2). – P. 689–737.

Stress kinases in the modulation of metabolism and energy balance / E. Manieri, G. Sabio // J Mol. Endocrinol. – 2015. – 55(2). – P. 11–R22.

c-Jun N-terminal kinase inhibitors: a patent review (2010 – 2014) / M. Gehringer, F. Muth, P. Koch, S. A. Laufer Expert. Opin. Ther. Pat. – 2015. – 25(8). – P. 849–872.

C-Jun N-terminal kinase signalling pathway in response to cisplatin / D. Yan, G. An, M. T. Kuo // J. Cell Mo.l Med. – 2016. – 20(11). – P. 2013–2019.

Šrámek J. Kinase signaling in apoptosis induced by saturated fatty acids in pancreatic β-cells / J. Šrámek, V. Němcová-Fürstová, J. Kovář // Int. J. Mol. Sci. – 2016. – 17(9). – P. E1400.

Lenna S. Endoplasmic reticulum stress and endothelial dysfunction / S. Lenna, R. Han, M. Trojanowska / IUBMB Life. – 2014. – 66(8). – P. 530–537.

Involvement of oxidative stress in suppression of insulin biosynthesis under diabetic conditions / H. Kaneto, T. A. Matsuoka // Int. J. Mol. Sci. – 2012. –13(10). – P. 13680–13690.

A central role for JNK in obesity and insulin resistance / J. Hirosumi, G. Tuncman, L. Chang [et al.] // Nature. – 2002. – 420. – P. 333–336.

Bogoyevitch M. A. Inhibitors of c-Jun N-terminal kinases: JuNK no more? / M. A. Bogoyevitch, P. G. Arthur // Biochim. Biophys. Acta. – 2008. 1784(1). – P. 76–93.

c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges / M. A. Bogoyevitch, K. R. W. Ngoei, T. T. Zhao [et al.] // Biochimica et Biophysica Acta. – 2010. – 1804(3). – P. 463–475.

MAP kinase pathways / M. Qi, E. A. Elion // J. Cell Sci. – 2005. – 118(Pt 16). – P. 3569–3572.

Boomer J. S. Functional interactions of HPK1 with adaptor proteins / J. S. Boomer, T.-H. Tan // J. Cell Biochem. – 2005. – 95(1). – P. 34–44.

Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76 / J. Bubeck Wardenburg, R. Pappu, J. Y. Bu [et al.] // Immunity. – 1998. – 9(5). – P. 607–616.

JNK Signaling in Apoptosis / D. N. Dhanasekaran, E. P. Reddy // Oncogene. – 2008. – 27(48). – P. 6245–6251.

Glucose and fatty acids synergize to promote B-cell apoptosis through activation of glycogen synthase kinase 3β independent of JNK activation / K. Tanabe, Y. Liu, S. D. Hasan [et al.] // PLoS One. – 2011. – 6(4). – P. e18146.

Different properties of SEK1 and MKK7 in dual phosphorylation of stress-induced activated protein kinase SAPK/JNK in embryonic stem cells / H. Kishimoto, K. Nakagawa, T. Watanabe [et al.] // J. Biol. Chem. – 2003. – 278(19). – P. 16595–16601.

Moon J. Reassembly of JIP1 scaffold complex in JNK MAP kinase pathway using heterologous protein interactions / J. Moon, S.-H. Park // PLoS One. – 2014. – 9(5). – P. e96797.

Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways / Y. Son, Y.-K. Cheong, N.-H. Kim [et al.] // J. Signal Transduc. – 2011. – 79 – P. 2639.

JNKs, insulin resistance and inflammation: A possible link between NAFLD and coronary artery disease / G. Tarantino, A. Caputi // World J. Gastroenterol. – 2011. – 17(33). – P. 3785–3794.

Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death / C. Bonny, A. Oberson, S. Negri [et al.] // Diabetes. – 2001. – 50(1). – P. 77–82.

Whitmarsh A. J. The JIP family of MAPK scaffold proteins / A. J. Whitmarsh // Biochem. Soc. Trans. – 2006. – 34(Pt 5). – P. 828–832.

Methylglyoxal, a reactive glucose metabolite, enhances autophagy flux and suppresses proliferation of human retinal pigment epithelial ARPE-19 cells / Y. C. Chang, M. C. Hsieh, H. J. Wu [et al.] // Toxicol In Vitro. – 2015. – 29(7). – P. 1358–1368.

Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3 / N. Kelkar, S. Gupta, M. Dickens, R. J. Davis // Mol. Cell Biol. – 2000. – 20(3). – P. 1030–1043.

A scaffolding protein that tethers JNK/p38MAPK signaling modules and transcription factors / C. M. Lee, D. Onesime, C. D. Reddy [et al.] // Proc. Natl. Acad. Sci. USA. – 2002. – 99(22). – P. 14189–14194

Liou G.-Y. Reactive oxygen species in cancer / G.-Y. Liou, P. Storz // Free Radic. Res. – 2010. – 44. – P. 479–496.

Storz P. Mitochondrial ROS—radical detoxification, mediated by protein kinase D / P. Storz // Trends Cell Biol. – 2007. – 17. – P. 13–18.

Yin F. Metabolic triad in brain aging: mitochondria, insulin/IGF-1 signalling and JNK signalling / F. Yin, T. Jiang, E. Cadenas // Biochem. Soc. Trans. – 2013. – 41(1). – P. 101–105.

The Role of Glutathione S-transferase P in signaling pathways and S-glutathionylation / K. D. Tew, Y. Manevich, C. Grek [et al.] // Cancer Free Radic. Biol. Med. – 2011. – 51(2). – P. 299–313.

Glucose and fatty acids synergize to promote B-cell apoptosis through activation of glycogen synthase kinase 3β independent of JNK activation / K. Tanabe, Y. Liu, S. D. Hasan [et al.] // PLoS One. – 2011. – 6(4). – P. e18146.

Bansal M. Oxidative Stress Mechanisms and their Modulation. Springer / M. Bansal, N. Kaushal // New Dehli. – 2014. – 345 p.

Pae Reactive oxygen species in the activation of MAP kinases / Y. Son, S. Kim, H. T. Chung, H. O. Methods // Enzymol. – 2013. – 528. – P. 27–48.

Kitamura M. Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces / M. Kitamura // Am. J. Physiol. Renal Physiol. – 2008. – 295(2). – P. F323–F334.

Zhang K. Identification and characterization of endoplasmic reticulum stress-induced apoptosis in vivo / K. Zhang, D. J. Kaufman // Methods Enzymol. – 2008. – 442. – P. 395–419.

Inagi R. Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury / R. Inagi // Nephron. Exp. Nephrol. – 2009. – 112(1). – P. e1–e9.

IRE1 signaling affects cell fate during the unfolded protein response / J. H. Lin, H. Li, D. Yasumura [et al.] // Science. – 2007. – 318. – P. 944–949.

Ron D. How IRE1 reacts to ER stress / D. Ron, S. R. Hubbard // Cell. –2008. – 132. – P. 24–26.

Malhi H. Endoplasmic reticulum stress in liver disease / H. Malhi, R. J. Kaufman // J. Hepatol. – 2011. – 54. – P. 795–809.

Davis R. J. Signal transduction by the JNK group of MAP kinases / R. J. Davis // Cell. – 2000. – 103. – P. 239–252.

Weinberg J. M. Lipotoxicity / J. M. Weinberg // Kidney Int. – 2006. – 70. – P. 1560–1566.

Capurso C. From excess adiposity to insulin resistance: the role of free fatty acids / C. Capurso, A. Capurso // Vascul. Pharmacol. – 2012. – 57(2-4). – P. 91–97.

Ibrahim S. H. Who pulls the trigger: JNK activation in liver lipotoxicity? / S. H. Ibrahim, G. J. Gores // J. Hepatol. – 2012. – 56(1). – P. 17–19.

Kupffer cells: increasingly significant role in nonalcoholic fatty liver disease / Z. Wenfeng, W. Yakun, M. Di [et al.] // Ann. Hepatol. – 2014. – 13(5). – P. 489–495.

Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth / K. A. Harvey, C. L. Walker, T. M. Pavlina [et al.] // Clin. Nutr. – 2010. – 29(4). – P. 492–500.

Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaining de novo ceramide synthesis / L. Martínez, S. Torres, A. Baulies [et al.] // Oncotarget. – 2015. – 6(39). – P. 41479–41496.

Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis / Y. Akazawa, S. Cazanave, J. L. Mott [et al.] // J. Hepatol. – 2010. – 52(4). – P. 586–593.

Oleic acid-induced hepatic steatosis is coupled with downregulation of aquaporin 3 and upregulation of aquaporin 9 via activation of p38 signaling / L. Y. Gu, L. W. Qiu, X. F. Chen [et al.] // Horm. Metab. Res. – 2015. – 47(4). – P. 259–264.

Circulating Unsaturated Fatty Acids Delineate the Metabolic Status of Obese Individuals / Y. Ni, L. Zhao, H. Yu [et al.] // EBio. Medicine. – 2015. – 2(10). – P. 1513–1522.

Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis / K. Kakisaka, S. C. Cazanave, C. D. Fingas [et al.] // Am. .J Physiol. Gastrointest. Liver Physiol. – 2012. – 302(1). – P. G77–G84.

Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue / N. Kawasaki, R. Asada, A. Saito [et al.] // Sci. Rep. – 2012. – 2. – P. 799.

Malhi H. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease / H. Malhi, G. J. Gores // Semin. Liver Dis. – 2008. – 28(4). – P. 360–369.

Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis / J. Seeßle, G. Liebisch, G. Schmitz [et al.] // Biochim. Biophys. Acta. – 2015. – 1851(5). – P. 549–565.

Role of the mixed-lineage protein kinase pathway in the metabolic stress response to obesity / S. Kant, T. Barrett, A. Vertii [et al.] // Cell Rep. – 2013. – 4(4). – P. 681–688.

Kaplowitz N. Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity / S. Win, T. A. Than, B. H. Le. [et al.] // J. Hepatol. – 2015. – 62(6). – P. 1367–1374.

Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: implications for nonalcoholic steatohepatitis / W. Stremmel, S. Staffer, A. Wannhoff [et al.] // FASEB J. – 2014. – 28(7). – P. 3159–3170.

Lysophosphatidylcholine triggers TLR2- and TLR4-mediated signaling pathways but counteracts LPS-induced NO synthesis in peritoneal macrophages by inhibiting NF-κB translocation and MAPK/ERK phosphorylation / A. B. Carneiro, B. M. Iaciura, L. L. Nohara [et al.] // PLoS One. – 2013. – 8(9). – P. e76233.

Biomarkers of morbid obesity and prediabetes by metabolomic profiling of human discordant phenotypes / S. Tulipani, M. Palau-Rodriguez, A. Miñarro Alonso [et al.] // Clin. Chim. Acta. – 2016. – 463. – P. 53–61.

Baicalein, an active component of Scutellaria baicalensis Georgi, prevents lysophosphatidylcholine-induced cardiac injury by reducing reactive oxygen species production, calcium overload and apoptosis via MAPK pathways / Chen H. M., Hsu J. H., Liou S. F. [et al.] // BMC Complement. Altern. Med. – 2014. – 14. – P. 233.

Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes / M. S. Han, S. Y. Park, K. Shinzawa [et al.] // J. Lipid Res. – 2008. – 49(1). – P. 84–97.

Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis / K. Kakisaka, S. C. Cazanave, C. D. Fingas [et al.] // Am. J. Physiol. Gastrointest. Liver Physiol. – 2012. – 302(1). – P. G77–G84.

Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates / G. Solinas, W. Naugler, F. Galimi [et al.] // Proc.Natl.Acad.Sci. USA. – 2006. – 103(44). – P. 16454–16459.

Possible effect of lysophosphatidic acid on cell proliferation and involvement of lysophosphatidic acid and lysophosphatidic acid receptors in mechanical stretch-induced mitogen-activated protein kinase / Y. Kawashima, N. Kushida, S. Kokubun [et al.] // Int. J. Urol. – 2015. – 22(8). – P. 778–784.

Attenuation of LPS-induced cyclooxygenase-2 and inducible NO synthase expression by lysophosphatidic acid in macrophages / H. Y. Chien, C. S. Lu, K. H. Chuang [et al.] / Innate Immun. – 2015. – 21(6). – P. 635–646.

Choi S. Sphingolipids in high fat diet and obesity-related diseases / S. Choi, A. J. Snider // Mediators Inflamm. – 2015. – 2015. – P. 520–618.

Role of ceramides in nonalcoholic fatty liver disease / M. Pagadala, T. Kasumov, A. J. McCullough [et al.] // Trends Endocrinol. Metab. – 2012. – 23(8). – P. 365–371.

Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation / M. A. Park, G. Zhang, A. P. Martin [et al.] // Cancer Biol. Ther. – 2008. – 7(10). – P. 1648–1662.

Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice / S. Liangpunsakul, Y. Rahmini, R. A. Ross [et al.] // Am. J. Physiol. Gastrointest. Liver Physiol. – 2012. – 302(5). – P. G515–G523.

Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome / G. Yang, L. Badeanlou, J. Bielawski [et al.] // Am. J. Physiol. Endocrinol. Metab. – 2009. – 297(1). – P. E211–E224.

Ceramide induces human hepcidin gene transcription through JAK/STAT3 pathway / S. Lu, S. K. Natarajan, J. L. Mott [et al.] // PLoS One. – 2016. 11(1). – P. e0147474.

Marí M. Sphingolipid signaling and liver diseases / M. Marí, Fernández- J. C. Checa // Liver Int. – 2007. – 27(4). – P. 440–450.

Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate / N. Ueda // Int. J. Mol. Sci. – 2015. – 16(3). – P. 5076–5124.

C Decoding cell death signals in liver inflammation / Brenner, L. Galluzzi, O. Kepp, G. Kroemer // J. Hepatol. – 2013. – 59(3). – P. 583–594.

Sphingosine kinase 1 inhibition improves lipopolysaccharide/D-galactosamine-induced acute liver failure by inhibiting mitogen-activated protein kinases pathway / T. Tian, W. Tian, F. Yang [et al.] // United Eur. Gastroenterol. J. – 2016. – 4(5). – P. 677–685.

AP-1 regulates sphingosine kinase 1 expression in a positive feedback manner in glomerular mesangial cells exposed to high glucose / K. Huang, J. Huang, C. Chen [et al.] // Cell Signal. – 2014. – 26(3). – P. 629–638.

The glyoxalase pathway: the first hundred years... and beyond / M. S. Silva, R. A. Gomes, A. E. Ferreira [et al.] // Biochem. J. – 2013. – 453(1). – P. 1–15.

The glyoxalase pathway: the first hundred years... and beyond / M. S. Silva, R. A. Gomes, A. E. Ferreira [et al.] // Biochem. J. – 2013. – 453(1). – P. 1–15.

Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation / G. Vistoli, D. De Maddis, A. Cipak [et al.] // Free Rad. Res. – 2013. – 47(S1). – P. 3–27.

1,2-dicarbonyl compounds in commonly consumed foods / J. Degen, M. Hellwig, T. Henle // J. Agricult. and Food Chem. – 2012. – 60(28). – P. 7071–7079.

δ-Tocopherol prevents methylglyoxal-induced apoptosis by reducing ROS generation and inhibiting apoptotic signaling cascades in human umbilical vein endothelial cells / M. Do, S. Kim, S. Y. Seo [et al.] // Food Funct. – 2015. – 6(5). – P. 1568–1577.

Tanshinone IIA protects against methylglyoxal-induced injury in human brain microvascular endothelial cells / W. J. Zhou, Q. F. Gui, Y. Wu, Y. M. Yang // Int. J. Clin. Exp. Med. – 2015. – 8(2). – P. 1985–1992.

Glyoxal and methylglyoxal induce aggregation and inactivation of ERK in human endothelial cells / A. A. Akhand, K. Hossain, M. Kato [et al.] // Free Radic. Biol. Med. – 2001. – 31(10). – P. 1228–1235.

Methylglyoxal mediates vascular inflammation via JNK and p38 in human endothelial cells / H. Yamawaki, K. Saito, M. Okada, Y. Hara // Am. J. Physiol. Cell Physiol. – 2008. – 295(6). – P. C1510–C1507.

Methylglyoxal impairs insulin secretion of pancreatic β-Cells through increased production of ROS and mitochondrial dysfunction mediated by upregulation of UCP2 and MAPKs / J. Bo, S. Xie, Y. Guo [et al.] // J. Diabetes Res. – 2016. – 202. – P. 98–54.

Fructose-induced stress signaling in the liver involves methylglyoxal / Y. Wei, D. Wang, G. Moran [et al.] // Nutr. Metab. (Lond). – 2013. – 10. – P. 32.

Methylglyoxal activates NF-κB nuclear translocation and induces COX-2 expression via a p38-dependent pathway in synovial cells / C. C. Lin, C. M. Chan, Y. P. Huang [et al.] // Life Sci. – 2016. – 149. – P. 25–33.

Methylglyoxal-induced neuroinflammatory response in in vitro astrocytic cultures and hippocampus of experimental animals / J. M. Chu, D. K. Lee, D. P. Wong [et al.] // Metab. Brain Dis. – 2016. – 31(5). – P. 1055–1064.

Neuroprotective effect of sulforaphane against methylglyoxal cytotoxicity / C. Angeloni, M. Malaguti, B. Rizzo [et al.] // Chem. Res. Toxicol. – 2015. – 28(6). – P. 1234–1245.




DOI: http://dx.doi.org/10.11603/mcch.2410-681X.2016.v0.i4.7289

Refbacks

  • There are currently no refbacks.